Skip to content

vmchale/apple

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Apple Array System

This is an experimental compiler for an array domain-specific language (DSL) targeting Aarch64.

See Apple by Example for a tour of the language.

The compiler will bail out with arcane error messages rather than produce an incorrect result (some cases are not implemented), except that the Python/R extension modules do not enforce type safety and thus may mysteriously segfault or produce unpredictable corrupt results.

Compiler-As-a-Library

Rather than an environment-based interpreter or a compiler invoked on the command line and generating object files, one calls a library function which returns assembly or machine code from a source string.

Thus the same implementation can be used interpreted, compiled, or called from another language.

 > [((+)/x)%ℝ(:x)]\`7 (frange 1 10 10)
Arr (4) [4.0, 5.0, 6.0, 7.0]
>>> import apple
>>> import numpy as np
>>> sliding_mean=apple.jit('([((+)/x)%ℝ(:x)]\`7)')
>>> sliding_mean(np.arange(0,10,dtype=np.float64))
array([3., 4., 5., 6.])
repl:1:> (import apple)
@{_ @{:value <cycle 0>} apple/jit @{:private true} apple/tyof @{:private true}}
repl:2:> (def sliding-mean (apple/jit ``([((+)/x)%ℝ(:x)]\`7)``))
<jit Vec (i + 7) floatVec i float>
repl:3:> (sliding-mean @[0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0])
@[3 4 5 6 7]
> source("R/apple.R")
> sliding_mean<-jit("([((+)/x)%ℝ(:x)]\\`7)")
> run(sliding_mean,seq(0,10,1.0))
[1] 3 4 5 6 7

Apple tends to be faster than R; the JIT'ed moving average in Apple is substantially more performant than the rolling mean from the zoo package and matrix multiplication is also faster.

JIT'ed Calculator

There are no imports.

Recursive functions are not allowed. The DSL is still useful in that it compiles array constructs for the host languages.

Dimension As a Functor

This is based on J (and APL?). Looping is replaced by functoriality (rerank).

To supply a zero-cells (scalars) as the first argument to (cons) and 1-cells as the second:

(⊲)`{0,1}

We can further specify that the cells should be selected along some axis, e.g. to get vector-matrix multiplication:

λA.λx.
{
  λA.λx. (x⋅)`{1∘[2]} (A::Arr (i × j) float)
}

The 2 means "iterate over the second axis" i.e. columns.

Array QuickCheck

 > :qc \x. [(+)/(*)`x y] x x >= 0.0
Passed, 100.
 > :qc \x. [(+)/(*)`x y] x x > 2.0
Proposition failed!
[ Arr (5) [ 0.6213045301664751
          , 0.6599381241699802
          , 0.762478867048601
          , 6.026206825450409e-3
          , 0.5633419282435523 ] ]

Installation

Use ghcup to install cabal and GHC. Then:

make install

to install arepl (the REPL).

Run

make
sudo make install-lib

To install the shared library (requires jq).

Python

To install the Python module:

make install-py

R

Install libappler.so on your system like so:

make -C Rc
sudo make install-r

Then:

source("R/apple.R")

to access the functions.

Janet

Uses jpm.

make -C janet install

Documentation

Type \l in the REPL to show the reference card:

 > \l
Λ             scan                     √             sqrt
⋉             max                      ⋊             min
⍳             integer range            ⌊, ⌈          floor, ceiling
e:            exp                      ⨳ {m,n}       convolve
\~            successive application   \`n           infix
_.            log                      '             map
`             zip                      `{i,j∘[k,l]}  rank
𝒻             range (real)             𝜋             pi
_             negate                   :             size
𝓉             dimension                {x⟜y;z}       no inline
->n           select                   **            power
⊂             scatter                  }.            last
⊲             cons                     ⊳             snoc
^:            iterate                  %.            matmul
⊗             outer product            ⍉, |:         transpose
{.            head                     }:            typesafe init
⟨z,w⟩         array literal            ?p,.e1,.e2    conditional
...

Enter :help in REPL:

 > :help
:help, :h                    Show this help
:yank, :y      <fn> <file>   Read file
:store, :st    <name> <expresAdd to environment
:ty            <expression>  Display the type of an expression
:ann           <expression>  Annotate with types
...

Vim Plugin

:h apple lists potentially useful digraphs, viz.

←   <-
⟜   o-
ℯ   ee
Λ   /\
⋮

Python Module

To display module documentation:

>>> import apple
>>> help(apple)
CLASSES
    builtins.object
        AppleJIT

    class AppleJIT(builtins.object)
     |  JIT-compiled function in-memory
     |
     |  Methods defined here:
     |
     |  __call__(self, /, *args, **kwargs)
     |      Call self as a function.
     |
     |  ----------------------------------------------------------------------

FUNCTIONS
    asm(...)
        Dump assembly

    ir(...)
        Dump IR (debug)

    jit(...)
        Compile an expressoin into a callable object

    typeof(...)
        Display type of expression

Janet

repl:2:> (import apple)
@{_ @{:value <cycle 0>} apple/jit @{:private true} apple/tyof @{:private true}}
repl:4:> (doc apple/jit)


    cfunction

    Compile source string into Janet callable


nil
repl:5:> (doc apple/tyof)


    cfunction

    type of expression


nil