Code for paper on Generative Graphical Inverse Kinematics.
Install matching versions of PyTorch and PyTorch-Geometric. We used torch-1.10.1
and torch-geometric-2.0.4
but other versions should work as well.
After installing the above:
pip install -e .
./train.sh <yourmodelname> <yourdatasetname>
See ./generative-graphik/generative_graphik/args/parser.py
for more details on data generation and model parameters.
To modify the training data, modify lines 29-35 of train.sh
.
To train on specific robots:
python -u ${SRC_PATH}/generative_graphik/utils/dataset_generation.py \
--id "${DATASET_NAME}" \
--robots ur10 kuka panda lwa4d lwa4p \
--num_examples 512000 \
--max_examples_per_file 512000 \
--goal_type pose \
--randomize False
To train on random robots of DOFs 6 and 7:
python -u ${SRC_PATH}/generative_graphik/utils/dataset_generation.py \
--id "${DATASET_NAME}" \
--robots revolute_chain \
--dof 7 6 \
--num_examples 512000 \
--max_examples_per_file 512000 \
--goal_type pose \
--randomize True \
--randomize_percentage 0.4
To modify the model parameters, modify lines 43-77 of train.sh
.