Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add coordination ruler #13337

Draft
wants to merge 13 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions spacy/pipeline/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from .attributeruler import AttributeRuler
from .coordinationruler import CoordinationSplitter
from .dep_parser import DependencyParser
from .edit_tree_lemmatizer import EditTreeLemmatizer
from .entity_linker import EntityLinker
Expand All @@ -21,6 +22,7 @@

__all__ = [
"AttributeRuler",
"CoordinationSplitter",
"DependencyParser",
"EditTreeLemmatizer",
"EntityLinker",
Expand Down
248 changes: 248 additions & 0 deletions spacy/pipeline/coordinationruler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
import re
from typing import Callable, List, Optional, Union

import pydantic
from pydantic import BaseModel

if pydantic.VERSION.split(".")[0] == "1": # type: ignore
from pydantic import validator # type: ignore
else:
from pydantic import field_validator as validator # type: ignore

from ..language import Language
from ..tokens import Doc, Token
from ..vocab import Vocab
from .pipe import Pipe
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you run isort on all files? (the test suite will fail otherwise)


######### helper functions across the default splitting rules ##############


def _split_doc(doc: Doc) -> bool:
"""Check to see if the document has a noun phrase
with a modifier and a conjunction.

Args:
doc (Doc): The input document.

Returns:
bool: True if the document has a noun phrase
with a modifier and a conjunction, else False.
"""

noun_modified = False
has_conjunction = False

for token in doc:
if token.head.pos_ == "NOUN": ## check to see that the phrase is a noun phrase
for child in token.head.children:
if child.dep_ in ["amod", "advmod", "nmod"]:
noun_modified = True

# check if there is a conjunction in the phrase
if token.pos_ == "CCONJ":
has_conjunction = True

if noun_modified and has_conjunction:
return True

else:
return False


def _collect_modifiers(token: Token) -> List[str]:
"""Collects adverbial modifiers for a given token.

Args:
token (Token): The input token.

Returns:
List[str]: A list of modifiers for the token.
"""
modifiers = []
for child in token.children:
if child.dep_ == "amod":
# collect adverbial modifiers for this adjective
adv_mods = [
adv_mod.text
for adv_mod in child.children
if adv_mod.dep_ in ["advmod"] and not adv_mod.pos_ == "CCONJ"
]

modifier_phrase = " ".join(adv_mods + [child.text])
modifiers.append(modifier_phrase)
# also check for conjunctions to this adjective
for conj in child.conjuncts:
adv_mods_conj = [
adv_mod.text
for adv_mod in conj.children
if adv_mod.dep_ in ["advmod"] and not adv_mod.pos_ == "CCONJ"
]
modifier_phrase_conj = " ".join(adv_mods_conj + [conj.text])
modifiers.append(modifier_phrase_conj)

return modifiers


########### DEFAULT COORDINATION SPLITTING RULES ##############


def split_noun_coordination(doc: Doc) -> Union[List[str], None]:
"""Identifies and splits noun phrases with a modifier
and a conjunction.

construction cases:
- "apples and oranges" -> None
- "green apples and oranges" -> ["green apples", "green oranges"]
- "apples and juicy oranges" -> ["juicy apples", "juicy oranges"]
- "hot chicken wings and soup" -> ["hot chicken wings", "hot soup"]
- "green apples and rotten oranges" -> ["green apples", "rotten oranges"]
- "very green apples and oranges" -> ["very green apples", "very green oranges"]
- "delicious and juicy apples" -> ["delicious apples", "juicy apples"]
- "delicious but quite sour apples" -> ["delicious apples", "quite sour apples"]
- "delicious but quite sour apples and oranges" -> ["delicious apples", "quite sour apples", "delicious oranges", "quite sour oranges"]

Args:
doc (Doc): The input document.

Returns:
Union[List[str], None]: A list of the coordinated noun phrases,
or None if no coordinated noun phrases are found.
"""
phrases = []
modified_nouns = set()
to_split = _split_doc(doc)

if to_split:
for token in doc:
if token.dep_ == "amod" and token.head.pos_ == "NOUN":
head_noun = token.head

if head_noun not in modified_nouns:
modifier_phrases = _collect_modifiers(head_noun)
nouns_to_modify = [head_noun] + list(head_noun.conjuncts)

for noun in nouns_to_modify:
compound_parts = [
child.text
for child in noun.lefts
if child.dep_ == "compound"
]
complete_noun_phrase = " ".join(compound_parts + [noun.text])
for modifier_phrase in modifier_phrases:
phrases.append(f"{modifier_phrase} {complete_noun_phrase}")
modified_nouns.add(noun) # mark this noun as modified

return phrases if phrases != [] else None
else:
return None


###############################################################


class SplittingRule(BaseModel):
function: Callable[[Doc], Union[List[str], None]]

@validator("function")
def check_return_type(cls, v):
dummy_doc = Doc(Language().vocab, words=["dummy", "doc"], spaces=[True, False])
result = v(dummy_doc)
if result is not None:
if not isinstance(result, List):
raise ValueError(
"The custom splitting rule must return None or a list."
)
elif not all(isinstance(item, str) for item in result):
raise ValueError(
"The custom splitting rule must return None or a list of strings."
)
return v


@Language.factory(
"coordination_splitter", requires=["token.dep", "token.tag", "token.pos"]
)
def make_coordination_splitter(nlp: Language, name: str):
"""Make a CoordinationSplitter component.

the default splitting rules include:
- split_noun_coordination

Args:
nlp (Language): The spaCy Language object.
name (str): The name of the component.

RETURNS The CoordinationSplitter component.

DOCS: xxx
"""

return CoordinationSplitter(nlp.vocab, name=name)


class CoordinationSplitter(Pipe):
def __init__(
self,
vocab: Vocab,
name: str = "coordination_splitter",
rules: Optional[List[SplittingRule]] = None,
) -> None:
self.name = name
self.vocab = vocab
if rules is None:
default_rules = [
split_noun_coordination,
]
self.rules = [SplittingRule(function=rule) for rule in default_rules]
else:
self.rules = [
rule
if isinstance(rule, SplittingRule)
else SplittingRule(function=rule)
for rule in rules
]

def clear_rules(self) -> None:
"""Clear the default splitting rules."""
self.rules = []

def add_default_rules(self) -> None:
"""Reset the default splitting rules."""
default_rules = [
split_noun_coordination,
]
self.rules = [SplittingRule(function=rule) for rule in default_rules]

def add_rule(self, rule: Callable[[Doc], Union[List[str], None]]) -> None:
"""Add a single splitting rule to the default rules."""
validated_rule = SplittingRule(function=rule)
self.rules.append(validated_rule)

def add_rules(self, rules: List[Callable[[Doc], Union[List[str], None]]]) -> None:
"""Add a list of splitting rules to the default rules.

Args:
rules (List[Callable[[Doc], Union[List[str], None]]]): A list of functions to be added as splitting rules.
"""
for rule in rules:
# Wrap each rule in a SplittingRule instance to ensure it's validated
validated_rule = SplittingRule(function=rule)
self.rules.append(validated_rule)

def __call__(self, doc: Doc) -> Doc:
"""Apply the splitting rules to the doc.

Args:
doc (Doc): The spaCy Doc object.

Returns:
Doc: The modified spaCy Doc object.
"""
if doc.lang_ != "en":
return doc

for rule in self.rules:
split = rule.function(doc)
if split:
return Doc(doc.vocab, words=split)
return doc
Loading
Loading