Skip to content

VioletPeng/debiaswe

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Debiaswe: try to make word embeddings less sexist

🔴FAT* 2018 tutorial slides

Here we have the code and data for the following paper: Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings by Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. Proceedings of NIPS 2016.

Just looking to download a debiased embedding?

You can download binary/txt hard debiased version of the Google's Word2Vec embedding trained on Google News (Origin: GoogleNews-vectors-negative300.bin.gz found here).

Python scripts:

  • learn_gender_specific.py: given a word embedding and a seed set of gender-specific words (like king, she, etc.), it learns a much larger list of gender-specific words
  • debias.py: given a word embedding, sets of gender-pairs, gender-specific words, and pairs to equalize, it outputs a new word embedding. This version basically reads/writes word2vec binary file format.
python learn_gender_specific.py ../embeddings/GoogleNews-vectors-negative300.bin 50000 ../data/gender_specific_seed.json gender_specific_full.json
python debias.py ../embeddings/GoogleNews-vectors-negative300.bin ../data/definitional_pairs.json ../data/gender_specific_full.json ../data/equalize_pairs.json ../embeddings/GoogleNews-vectors-negative300-hard-debiased.bin

We also have seed data used to debias and crowd data used to evaluate the embeddings.

Data files:

  • gender_specific_seed.json: A list of 218 gender-specific words
  • gender_specific_full.json: A list of 1441 gender-specific words
  • definitional_pairs.json: The ten pairs of words we use to define the gender direction
  • equalize_pairs.json: Some crowdsourced F-M pairs of words that represent gender direction

🔵 This is only a partial repo at the moment. I will add more features as I get time.

(All external files that I refer within this repo can be found in this folder.)

About

Remove problematic gender bias from word embeddings.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 77.6%
  • Python 22.4%