-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathlatent_deformator.py
113 lines (89 loc) · 4.02 KB
/
latent_deformator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
from torch import nn
from torch.nn import functional as F
from enum import Enum
import numpy as np
from ortho_utils import torch_expm
class DeformatorType(Enum):
FC = 1
LINEAR = 2
ID = 3
ORTHO = 4
PROJECTIVE = 5
RANDOM = 6
class LatentDeformator(nn.Module):
def __init__(self, shift_dim, input_dim=None, out_dim=None, inner_dim=1024,
type=DeformatorType.FC, random_init=False, bias=True):
super(LatentDeformator, self).__init__()
self.type = type
self.shift_dim = shift_dim
self.input_dim = input_dim if input_dim is not None else np.product(shift_dim)
self.out_dim = out_dim if out_dim is not None else np.product(shift_dim)
if self.type == DeformatorType.FC:
self.fc1 = nn.Linear(self.input_dim, inner_dim)
self.bn1 = nn.BatchNorm1d(inner_dim)
self.act1 = nn.ELU()
self.fc2 = nn.Linear(inner_dim, inner_dim)
self.bn2 = nn.BatchNorm1d(inner_dim)
self.act2 = nn.ELU()
self.fc3 = nn.Linear(inner_dim, inner_dim)
self.bn3 = nn.BatchNorm1d(inner_dim)
self.act3 = nn.ELU()
self.fc4 = nn.Linear(inner_dim, self.out_dim)
elif self.type in [DeformatorType.LINEAR, DeformatorType.PROJECTIVE]:
self.linear = nn.Linear(self.input_dim, self.out_dim, bias=bias)
self.linear.weight.data = torch.zeros_like(self.linear.weight.data)
min_dim = int(min(self.input_dim, self.out_dim))
self.linear.weight.data[:min_dim, :min_dim] = torch.eye(min_dim)
if random_init:
self.linear.weight.data = 0.1 * torch.randn_like(self.linear.weight.data)
elif self.type == DeformatorType.ORTHO:
assert self.input_dim == self.out_dim, 'In/out dims must be equal for ortho'
self.log_mat_half = nn.Parameter((1.0 if random_init else 0.001) * torch.randn(
[self.input_dim, self.input_dim], device='cuda'), True)
elif self.type == DeformatorType.RANDOM:
self.linear = torch.empty([self.out_dim, self.input_dim])
nn.init.orthogonal_(self.linear)
def forward(self, input):
if self.type == DeformatorType.ID:
return input
input = input.view([-1, self.input_dim])
if self.type == DeformatorType.FC:
x1 = self.fc1(input)
x = self.act1(self.bn1(x1))
x2 = self.fc2(x)
x = self.act2(self.bn2(x2 + x1))
x3 = self.fc3(x)
x = self.act3(self.bn3(x3 + x2 + x1))
out = self.fc4(x) + input
elif self.type == DeformatorType.LINEAR:
out = self.linear(input)
elif self.type == DeformatorType.PROJECTIVE:
input_norm = torch.norm(input, dim=1, keepdim=True)
out = self.linear(input)
out = (input_norm / torch.norm(out, dim=1, keepdim=True)) * out
elif self.type == DeformatorType.ORTHO:
mat = torch_expm((self.log_mat_half - self.log_mat_half.transpose(0, 1)).unsqueeze(0))
out = F.linear(input, mat)
elif self.type == DeformatorType.RANDOM:
self.linear = self.linear.to(input.device)
out = F.linear(input, self.linear)
flat_shift_dim = np.product(self.shift_dim)
if out.shape[1] < flat_shift_dim:
padding = torch.zeros([out.shape[0], flat_shift_dim - out.shape[1]], device=out.device)
out = torch.cat([out, padding], dim=1)
elif out.shape[1] > flat_shift_dim:
out = out[:, :flat_shift_dim]
# handle spatial shifts
try:
out = out.view([-1] + self.shift_dim)
except Exception:
pass
return out
def normal_projection_stat(x):
x = x.view([x.shape[0], -1])
direction = torch.randn(x.shape[1], requires_grad=False, device=x.device)
direction = direction / torch.norm(direction)
projection = torch.matmul(x, direction)
std, mean = torch.std_mean(projection)
return std, mean