-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsphere_mesh.cu
83 lines (66 loc) · 2.8 KB
/
sphere_mesh.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include <optix.h>
#include <optixu/optixu_math_namespace.h>
#include <optixu/optixu_matrix_namespace.h>
#include <optixu/optixu_aabb_namespace.h>
#include "datadef.h"
using namespace optix;
rtBuffer<geom_data,1> dims;
rtDeclareVariable(optix::Ray, ray, rtCurrentRay, );
rtDeclareVariable(unsigned, cellnum, attribute cell_num, );
rtDeclareVariable(int, celltal, attribute cell_tal, );
rtDeclareVariable(unsigned, cellmat, attribute cell_mat, );
rtDeclareVariable(unsigned, cellfissile, attribute cell_fis, );
rtDeclareVariable(unsigned, sense , attribute cell_sense, );
rtDeclareVariable(float3, normal, attribute normal, );
RT_PROGRAM void intersect(int object_dex)
{
bool check_second = true;
float sgn = 0.0;
float radius = dims[object_dex].max[0];
float3 loc = make_float3(dims[object_dex].loc[0],dims[object_dex].loc[1],dims[object_dex].loc[2]);
float3 xformed_origin = ray.origin - loc; //direction does not need to be transformed since only translations are supported now, not rotations
//vector ops
//float a = 1.0; //dot(ray.direction, ray.direction); direction should always be normalized and mag=1 in 3d.
float b = dot(xformed_origin, ray.direction);
float disc = b*b - dot(xformed_origin, xformed_origin) + radius*radius;
if(disc>0.0f){
float t0 = -b-sqrtf(disc);
float t1 = -b+sqrtf(disc);
// if neg, neutron is inside of sphere
if ( t0*t1 < 0.0 ){
sgn = -1.0;
}
else{
sgn = 1.0;
}
if( rtPotentialIntersection( t0 ) ) {
cellnum = dims[object_dex].cellnum;
celltal = dims[object_dex].talnum;
cellmat = dims[object_dex].matnum;
cellfissile = dims[object_dex].is_fissile;
normal = sgn * (xformed_origin + (t0 * ray.direction) ) / radius;
sense = int(sgn);
if(rtReportIntersection(0))
check_second = false;
}
if(check_second) {
if( rtPotentialIntersection( t1 ) ) {
cellnum = dims[object_dex].cellnum;
celltal = dims[object_dex].talnum;
cellmat = dims[object_dex].matnum;
cellfissile = dims[object_dex].is_fissile;
normal = sgn * (xformed_origin + (t1 * ray.direction)) / radius;
sense = int(sgn);
rtReportIntersection(0);
}
}
}
}
RT_PROGRAM void bounds (int object_dex, float result[6])
{
float3 mins = make_float3(-dims[object_dex].max[0],-dims[object_dex].max[0],-dims[object_dex].max[0]); //set all to the radius
float3 maxs = make_float3( dims[object_dex].max[0], dims[object_dex].max[0], dims[object_dex].max[0]);
float3 loc = make_float3( dims[object_dex].loc[0], dims[object_dex].loc[1], dims[object_dex].loc[2]);
optix::Aabb* aabb = (optix::Aabb*)result;
aabb->set(mins+loc, maxs+loc);
}