-
Notifications
You must be signed in to change notification settings - Fork 26
/
ecdsa_test.go
473 lines (431 loc) · 10.8 KB
/
ecdsa_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
package cose
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"encoding/asn1"
"errors"
"io"
"math/big"
"reflect"
"testing"
)
func TestI2OSP(t *testing.T) {
tests := []struct {
name string
x *big.Int
buf []byte
want []byte
wantErr string
}{
{
name: "negative int",
x: big.NewInt(-1),
buf: make([]byte, 2),
wantErr: "I2OSP: negative integer",
},
{
name: "integer too large #1",
x: big.NewInt(1),
buf: make([]byte, 0),
wantErr: "I2OSP: integer too large",
},
{
name: "integer too large #2",
x: big.NewInt(256),
buf: make([]byte, 0),
wantErr: "I2OSP: integer too large",
},
{
name: "integer too large #3",
x: big.NewInt(1 << 24),
buf: make([]byte, 3),
wantErr: "I2OSP: integer too large",
},
{
name: "zero length string",
x: big.NewInt(0),
buf: make([]byte, 0),
want: []byte{},
},
{
name: "zero length string with nil buffer",
x: big.NewInt(0),
buf: nil,
want: nil,
},
{
name: "I2OSP(0, 2)",
x: big.NewInt(0),
buf: make([]byte, 2),
want: []byte{0x00, 0x00},
},
{
name: "I2OSP(1, 2)",
x: big.NewInt(1),
buf: make([]byte, 2),
want: []byte{0x00, 0x01},
},
{
name: "I2OSP(255, 2)",
x: big.NewInt(255),
buf: make([]byte, 2),
want: []byte{0x00, 0xff},
},
{
name: "I2OSP(256, 2)",
x: big.NewInt(256),
buf: make([]byte, 2),
want: []byte{0x01, 0x00},
},
{
name: "I2OSP(65535, 2)",
x: big.NewInt(65535),
buf: make([]byte, 2),
want: []byte{0xff, 0xff},
},
{
name: "I2OSP(1234, 5)",
x: big.NewInt(1234),
buf: make([]byte, 5),
want: []byte{0x00, 0x00, 0x00, 0x04, 0xd2},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
err := I2OSP(tt.x, tt.buf)
if err != nil && (err.Error() != tt.wantErr) {
t.Errorf("I2OSP() error = %v, wantErr %v", err, tt.wantErr)
return
} else if err == nil && (tt.wantErr != "") {
t.Errorf("I2OSP() error = %v, wantErr %v", err, tt.wantErr)
return
}
if got := tt.buf; (tt.wantErr == "") && !reflect.DeepEqual(got, tt.want) {
t.Errorf("I2OSP() = %v, want %v", got, tt.want)
}
})
}
}
func TestOS2IP(t *testing.T) {
tests := []struct {
name string
x []byte
want *big.Int
}{
{
name: "zero length string",
x: []byte{},
want: big.NewInt(0),
},
{
name: "OS2IP(I2OSP(0, 2))",
x: []byte{0x00, 0x00},
want: big.NewInt(0),
},
{
name: "OS2IP(I2OSP(1, 2))",
x: []byte{0x00, 0x01},
want: big.NewInt(1),
},
{
name: "OS2IP(I2OSP(255, 2))",
x: []byte{0x00, 0xff},
want: big.NewInt(255),
},
{
name: "OS2IP(I2OSP(256, 2))",
x: []byte{0x01, 0x00},
want: big.NewInt(256),
},
{
name: "OS2IP(I2OSP(65535, 2))",
x: []byte{0xff, 0xff},
want: big.NewInt(65535),
},
{
name: "OS2IP(I2OSP(1234, 5))",
x: []byte{0x00, 0x00, 0x00, 0x04, 0xd2},
want: big.NewInt(1234),
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
if got := OS2IP(tt.x); tt.want.Cmp(got) != 0 {
t.Errorf("OS2IP() = %v, want %v", got, tt.want)
}
})
}
}
func generateTestECDSAKey(t *testing.T) *ecdsa.PrivateKey {
key, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
if err != nil {
t.Fatalf("ecdsa.GenerateKey() error = %v", err)
}
return key
}
func Test_ecdsaKeySigner(t *testing.T) {
key := generateTestECDSAKey(t)
testSignVerify(t, AlgorithmES256, key, false)
}
func Test_ecdsaCryptoSigner(t *testing.T) {
wrappedKey := struct {
crypto.Signer
}{
Signer: generateTestECDSAKey(t),
}
testSignVerify(t, AlgorithmES256, wrappedKey, true)
}
func testSignVerify(t *testing.T, alg Algorithm, key crypto.Signer, isCryptoSigner bool) {
// set up signer
signer, err := NewSigner(alg, key)
if err != nil {
t.Fatalf("NewSigner() error = %v", err)
}
if isCryptoSigner {
if _, ok := signer.(*ecdsaCryptoSigner); !ok {
t.Fatalf("NewSigner() type = %v, want *ecdsaCryptoSigner", reflect.TypeOf(signer))
}
} else {
if _, ok := signer.(*ecdsaKeySigner); !ok {
t.Fatalf("NewSigner() type = %v, want *ecdsaKeySigner", reflect.TypeOf(signer))
}
}
if got := signer.Algorithm(); got != alg {
t.Fatalf("Algorithm() = %v, want %v", got, alg)
}
// sign / verify round trip
// see also conformance_test.go for strict tests.
content := []byte("hello world, مرحبا بالعالم")
sig, err := signer.Sign(rand.Reader, content)
if err != nil {
t.Fatalf("Sign() error = %v", err)
}
verifier, err := NewVerifier(alg, key.Public())
if err != nil {
t.Fatalf("NewVerifier() error = %v", err)
}
if err := verifier.Verify(content, sig); err != nil {
t.Fatalf("Verifier.Verify() error = %v", err)
}
// digested sign/verify round trip
dsigner, ok := signer.(DigestSigner)
if !ok {
t.Fatalf("signer is not a DigestSigner")
}
digest := sha256.Sum256(content)
dsig, err := dsigner.SignDigest(rand.Reader, digest[:])
if err != nil {
t.Fatalf("SignDigest() error = %v", err)
}
dverifier, ok := verifier.(DigestVerifier)
if !ok {
t.Fatalf("verifier is not a DigestVerifier")
}
if err := dverifier.VerifyDigest(digest[:], dsig); err != nil {
t.Fatalf("VerifyDigest() error = %v", err)
}
}
type ecdsaBadCryptoSigner struct {
crypto.Signer
signature []byte
err error
}
func (s *ecdsaBadCryptoSigner) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) (signature []byte, err error) {
return s.signature, s.err
}
func Test_ecdsaBadCryptoSigner_SignFailure(t *testing.T) {
badSigner := &ecdsaBadCryptoSigner{
Signer: generateTestECDSAKey(t),
err: errors.New("sign failure"),
}
testSignFailure(t, AlgorithmES256, badSigner)
}
func Test_ecdsaBadCryptoSigner_BadSignature(t *testing.T) {
key := generateTestECDSAKey(t)
// nil signature
badSigner := &ecdsaBadCryptoSigner{
Signer: key,
signature: nil,
}
testSignFailure(t, AlgorithmES256, badSigner)
// malformed signature: bad r
sig, err := asn1.Marshal(struct {
R, S *big.Int
}{
R: big.NewInt(-1),
S: big.NewInt(1),
})
if err != nil {
t.Fatalf("asn1.Marshal() error = %v", err)
}
badSigner = &ecdsaBadCryptoSigner{
Signer: key,
signature: sig,
}
testSignFailure(t, AlgorithmES256, badSigner)
// malformed signature: bad s
sig, err = asn1.Marshal(struct {
R, S *big.Int
}{
R: big.NewInt(1),
S: big.NewInt(-1),
})
if err != nil {
t.Fatalf("asn1.Marshal() error = %v", err)
}
badSigner = &ecdsaBadCryptoSigner{
Signer: key,
signature: sig,
}
testSignFailure(t, AlgorithmES256, badSigner)
}
func Test_ecdsaKeySigner_SignHashFailure(t *testing.T) {
key := generateTestECDSAKey(t)
crypto.RegisterHash(crypto.SHA256, badHashNew)
defer crypto.RegisterHash(crypto.SHA256, sha256.New)
testSignFailure(t, AlgorithmES256, key)
}
func Test_ecdsaCryptoSigner_SignHashFailure(t *testing.T) {
wrappedKey := struct {
crypto.Signer
}{
Signer: generateTestECDSAKey(t),
}
crypto.RegisterHash(crypto.SHA256, badHashNew)
defer crypto.RegisterHash(crypto.SHA256, sha256.New)
testSignFailure(t, AlgorithmES256, wrappedKey)
}
func testSignFailure(t *testing.T, alg Algorithm, key crypto.Signer) {
signer, err := NewSigner(alg, key)
if err != nil {
t.Fatalf("NewSigner() error = %v", err)
}
content := []byte("hello world")
if _, err = signer.Sign(rand.Reader, content); err == nil {
t.Fatalf("Sign() error = nil, wantErr true")
}
}
func Test_ecdsaVerifier_Verify_Success(t *testing.T) {
// generate key
alg := AlgorithmES256
key := generateTestECDSAKey(t)
// generate a valid signature
content, sig := signTestData(t, alg, key)
// set up verifier
verifier, err := NewVerifier(alg, key.Public())
if err != nil {
t.Fatalf("NewVerifier() error = %v", err)
}
if _, ok := verifier.(*ecdsaVerifier); !ok {
t.Fatalf("NewVerifier() type = %v, want *ecdsaVerifier", reflect.TypeOf(verifier))
}
if got := verifier.Algorithm(); got != alg {
t.Fatalf("Algorithm() = %v, want %v", got, alg)
}
// verify round trip
if err := verifier.Verify(content, sig); err != nil {
t.Fatalf("ecdsaVerifier.Verify() error = %v", err)
}
}
func Test_ecdsaVerifier_Verify_AlgorithmMismatch(t *testing.T) {
// generate key
alg := AlgorithmES256
key := generateTestECDSAKey(t)
// generate a valid signature
content, sig := signTestData(t, alg, key)
// set up verifier with a different algorithm
verifier := &ecdsaVerifier{
alg: AlgorithmES512,
key: &key.PublicKey,
}
// verification should fail on algorithm mismatch
if err := verifier.Verify(content, sig); err != ErrVerification {
t.Fatalf("ecdsaVerifier.Verify() error = %v, wantErr %v", err, ErrVerification)
}
}
func Test_ecdsaVerifier_Verify_KeyMismatch(t *testing.T) {
// generate key
alg := AlgorithmES256
key := generateTestECDSAKey(t)
// generate a valid signature
content, sig := signTestData(t, alg, key)
// set up verifier with a different key / new key
key = generateTestECDSAKey(t)
verifier := &ecdsaVerifier{
alg: alg,
key: &key.PublicKey,
}
// verification should fail on key mismatch
if err := verifier.Verify(content, sig); err != ErrVerification {
t.Fatalf("ecdsaVerifier.Verify() error = %v, wantErr %v", err, ErrVerification)
}
}
func Test_ecdsaVerifier_Verify_InvalidSignature(t *testing.T) {
// generate key
alg := AlgorithmES256
key := generateTestECDSAKey(t)
// generate a valid signature with a tampered one
content, sig := signTestData(t, alg, key)
tamperedSig := make([]byte, len(sig))
copy(tamperedSig, sig)
tamperedSig[0]++
// set up verifier with a different algorithm
verifier := &ecdsaVerifier{
alg: alg,
key: &key.PublicKey,
}
// verification should fail on invalid signature
tests := []struct {
name string
signature []byte
}{
{
name: "nil signature",
signature: nil,
},
{
name: "empty signature",
signature: []byte{},
},
{
name: "incomplete signature",
signature: sig[:len(sig)-2],
},
{
name: "tampered signature",
signature: tamperedSig,
},
{
name: "too many signature bytes",
signature: append(sig, 0),
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
if err := verifier.Verify(content, tt.signature); err != ErrVerification {
t.Errorf("ecdsaVerifier.Verify() error = %v, wantErr %v", err, ErrVerification)
}
})
}
}
func Test_ecdsaVerifier_Verify_HashFailure(t *testing.T) {
// generate key
alg := AlgorithmES256
key := generateTestECDSAKey(t)
// generate a valid signature
content, sig := signTestData(t, alg, key)
// set up verifier
verifier, err := NewVerifier(alg, key.Public())
if err != nil {
t.Fatalf("NewVerifier() error = %v", err)
}
// verify with bad hash implementation
crypto.RegisterHash(crypto.SHA256, badHashNew)
defer crypto.RegisterHash(crypto.SHA256, sha256.New)
if err := verifier.Verify(content, sig); err == nil {
t.Fatalf("ecdsaVerifier.Verify() error = nil, wantErr true")
}
}