-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathhd3losses.py
56 lines (49 loc) · 2.01 KB
/
hd3losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.hd3_ops import *
class LossCalculator(object):
def __init__(self, task):
assert task in ['flow', 'stereo']
self.task = task
self.dim = 1 if task == 'stereo' else 2
def __call__(self, ms_prob, ms_pred, gt, corr_range, ds=6):
B, C, H, W = gt.size()
lv = len(ms_prob)
criterion = nn.KLDivLoss(reduction='batchmean').cuda()
losses = {}
kld_loss = 0
for l in range(lv):
scaled_gt, valid_mask = downsample_flow(gt, 1 / 2**(ds - l))
if self.task == 'stereo':
scaled_gt = scaled_gt[:, 0, :, :].unsqueeze(1)
if l > 0:
scaled_gt = scaled_gt - F.interpolate(
ms_pred[l - 1],
scale_factor=2,
mode='bilinear',
align_corners=True)
scaled_gt = scaled_gt / 2**(ds - l)
gt_dist = vector2density(scaled_gt, corr_range[l],
self.dim) * valid_mask
kld_loss += 4**(ds - l) / (H * W) * criterion(
F.log_softmax(ms_prob[l], dim=1), gt_dist.detach())
losses['total'] = kld_loss
for loss_type, loss_value in losses.items():
losses[loss_type] = loss_value.reshape(1)
return losses
def EndPointError(output, gt):
# output: [B, 1/2, H, W], stereo or flow prediction
# gt: [B, C, H, W], 2D ground-truth annotation which may contain a mask
# NOTE: To benchmark the result, please ensure the ground-truth keeps
# its ORIGINAL RESOLUTION.
if output.size(1) == 1: # stereo
output = disp2flow(output)
output = resize_dense_vector(output, gt.size(2), gt.size(3))
error = torch.norm(output - gt[:, :2, :, :], 2, 1, keepdim=False)
if gt.size(1) == 3:
mask = (gt[:, 2, :, :] > 0).float()
else:
mask = torch.ones_like(error)
epe = (error * mask).sum() / mask.sum()
return epe.reshape(1)