-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathprepare_coco_few_shot.py
executable file
·173 lines (159 loc) · 4.65 KB
/
prepare_coco_few_shot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import json
import os
import random
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--seeds", type=int, nargs="+", default=[1, 10], help="Range of seeds"
)
args = parser.parse_args()
return args
def generate_seeds(args):
data_path = "datasets/cocosplit/datasplit/trainvalno5k.json"
data = json.load(open(data_path))
new_all_cats = []
for cat in data["categories"]:
new_all_cats.append(cat)
id2img = {}
for i in data["images"]:
id2img[i["id"]] = i
anno = {i: [] for i in ID2CLASS.keys()}
for a in data["annotations"]:
if a["iscrowd"] == 1:
continue
anno[a["category_id"]].append(a)
for i in range(args.seeds[0], args.seeds[1]):
random.seed(i)
for c in ID2CLASS.keys():
img_ids = {}
for a in anno[c]:
if a["image_id"] in img_ids:
img_ids[a["image_id"]].append(a)
else:
img_ids[a["image_id"]] = [a]
sample_shots = []
sample_imgs = []
for shots in [1, 2, 3, 5, 10, 30]:
while True:
imgs = random.sample(list(img_ids.keys()), shots)
for img in imgs:
skip = False
for s in sample_shots:
if img == s["image_id"]:
skip = True
break
if skip:
continue
if len(img_ids[img]) + len(sample_shots) > shots:
continue
sample_shots.extend(img_ids[img])
sample_imgs.append(id2img[img])
if len(sample_shots) == shots:
break
if len(sample_shots) == shots:
break
new_data = {
"info": data["info"],
"licenses": data["licenses"],
"images": sample_imgs,
"annotations": sample_shots,
}
save_path = get_save_path_seeds(
data_path, ID2CLASS[c], shots, i
)
new_data["categories"] = new_all_cats
with open(save_path, "w") as f:
json.dump(new_data, f)
def get_save_path_seeds(path, cls, shots, seed):
prefix = "full_box_{}shot_{}_trainval".format(shots, cls)
save_dir = os.path.join("datasets", "cocosplit", "seed" + str(seed))
os.makedirs(save_dir, exist_ok=True)
save_path = os.path.join(save_dir, prefix + ".json")
return save_path
if __name__ == "__main__":
ID2CLASS = {
1: "person",
2: "bicycle",
3: "car",
4: "motorcycle",
5: "airplane",
6: "bus",
7: "train",
8: "truck",
9: "boat",
10: "traffic light",
11: "fire hydrant",
13: "stop sign",
14: "parking meter",
15: "bench",
16: "bird",
17: "cat",
18: "dog",
19: "horse",
20: "sheep",
21: "cow",
22: "elephant",
23: "bear",
24: "zebra",
25: "giraffe",
27: "backpack",
28: "umbrella",
31: "handbag",
32: "tie",
33: "suitcase",
34: "frisbee",
35: "skis",
36: "snowboard",
37: "sports ball",
38: "kite",
39: "baseball bat",
40: "baseball glove",
41: "skateboard",
42: "surfboard",
43: "tennis racket",
44: "bottle",
46: "wine glass",
47: "cup",
48: "fork",
49: "knife",
50: "spoon",
51: "bowl",
52: "banana",
53: "apple",
54: "sandwich",
55: "orange",
56: "broccoli",
57: "carrot",
58: "hot dog",
59: "pizza",
60: "donut",
61: "cake",
62: "chair",
63: "couch",
64: "potted plant",
65: "bed",
67: "dining table",
70: "toilet",
72: "tv",
73: "laptop",
74: "mouse",
75: "remote",
76: "keyboard",
77: "cell phone",
78: "microwave",
79: "oven",
80: "toaster",
81: "sink",
82: "refrigerator",
84: "book",
85: "clock",
86: "vase",
87: "scissors",
88: "teddy bear",
89: "hair drier",
90: "toothbrush",
}
CLASS2ID = {v: k for k, v in ID2CLASS.items()}
args = parse_args()
generate_seeds(args)