-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpT3libs.py
1068 lines (908 loc) · 42.7 KB
/
mpT3libs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
def H3_rnd(shp3):
# Function to generate random Hessian values for a random image in 3D.
#
# Call: (H11,H12,H13,H22,H23,H33) = H3_rnd( shp3 )
#
# *Inputs*
# shp3: shape of the 3D image as (dim0, dim1, dim2)
#
# *Outputs*
# H11,H12,H13,H22,H23,H33: 3D arrays of shape 'shp3' with random values.
# They represent the 6 independent partial derivatives of a square and symmetric Hessian matrix H
# evaluated on a random 3D image at voxel (or location) [i,j,k]
# NB: It is assumed:
# [ H11[i,j,k] H12[i,j,k] H13[i,j,k] ]
# H[i,j,k] = [ H12[i,j,k] H22[i,j,k] H23[i,j,k] ]
# [ H13[i,j,k] H23[i,j,k] H33[i,j,k] ]
#
# The output values follow a canonical normal distribution (mean=0,std=1).
# Import Libraries
import numpy as np
import warnings
# Checking Inputs
if np.prod(np.shape(shp3)) != 3:
raise Exception('Input: "shp3" should be the shape of a 3D image, e.g. (idx0, idx1, idx2). The value of "shp3" was: {}'.format(shp3))
if ~ np.all( np.isfinite( shp3 ) , axis=-1 ):
raise Exception('Input: "shp3" should contain all FINITE elements. The value of "shp3" was: {}'.format(shp3))
if ~ np.all(shp3 == np.array(shp3,np.int32)):
shp3 = np.array(shp3,np.int32)
print(" -- Warning: Input argument (shp3) has non-integer elements - Default: round to closest integers.")
if ~ np.all( np.greater(shp3 , 0) ):
raise Exception('Input: "shp3" has non-positive number of elements. The value of "shp3" is: {}'.format(shp3))
# Determining outputs
H11 = np.random.randn(shp3[0],shp3[1],shp3[2])
H12 = np.random.randn(shp3[0],shp3[1],shp3[2])
H13 = np.random.randn(shp3[0],shp3[1],shp3[2])
H22 = np.random.randn(shp3[0],shp3[1],shp3[2])
H23 = np.random.randn(shp3[0],shp3[1],shp3[2])
H33 = np.random.randn(shp3[0],shp3[1],shp3[2])
(H11,H12,H13,H22,H23,H33) = rgl6Cmps(H11,H12,H13,H22,H23,H33)
return H11,H12,H13,H22,H23,H33
def T3_iso(shp3):
# Function to generate an isotropic tensor field in 3D
#
# Call: (El1,El2,El3,Ev1,Ev2,Ev3) = T3_iso( shp3 )
#
# *Inputs*
# shp3: shape of the 3D image as (dim0, dim1, dim2)
#
# *Outputs*
# El1,El2,El3: 3D arrays with unitary values of shape shp3.
# They represent the 3 Eigen-values associated to an *isotropic*
# 3D image at voxel (or location) [i,j,k]
# Ev1,Ev2,Ev3: 4D arrays of shape (shp3,3) with unitary and zero values.
# They represent the 3 canonical Eigen-vectors associated to an *isotropic*
# 3D image at voxel (or location) [i,j,k]
# Import Libraries
import numpy as np
# Checking Inputs
if np.prod(np.shape(shp3)) != 3:
raise Exception('Input: "shp3" should be the shape of a 3D image, e.g. (idx0, idx1, idx2). The value of "shp3" was: {}'.format(shp3))
if ~ np.all( np.isfinite( shp3 ) , axis=-1 ):
raise Exception('Input: "shp3" should contain all FINITE elements. The value of "shp3" was: {}'.format(shp3))
if ~ np.all(shp3 == np.array(shp3,np.int32)):
shp3 = np.array(shp3,np.int32)
print(" -- Warning: Input argument (shp3) has non-integer elements - Default: round to closest integers.")
if ~ np.all( np.greater(shp3 , 0) ):
raise Exception('Input: "shp3" has non-positive number of elements. The value of "shp3" is: {}'.format(shp3))
# Initialising outputs
(El1,El2,El3,
Ev11,Ev12,Ev13,
Ev21,Ev22,Ev23,
Ev31,Ev32,Ev33) = iniElvs(shp3)
Ev1,Ev2,Ev3 = catEvs(Ev11,Ev12,Ev13,
Ev21,Ev22,Ev23,
Ev31,Ev32,Ev33)
return El1,El2,El3,Ev1,Ev2,Ev3
def T3_rnd(shp3):
# Function to generate a random tensor field in 3D
#
# Call: (El1,El2,El3,Ev1,Ev2,Ev3) = T3_rnd( shp3 )
#
# *Inputs*
# shp3: shape of the 3D image as (dim0, dim1, dim2)
#
# *Outputs*
# El1,El2,El3: 3D arrays with random values of shape shp3,
# they represent the 3 Eigen-values associated to a
# 3D image at voxel (or location) [idx0,idx1,idx2]
# Ev1,Ev2,Ev3: 4D arrays with values of shape (shp3,3),
# they represent the 3 Eigen-vectors associated to the
# eigen-values of a 3D image at voxel (or location) [idx0,idx1,idx2]
#
# *** NB: Eigen-values and associated Eigen-vectors are *SORTED* to satisfy
# the condition: abs(El1) <= abs(El2) <= abs(El3)
# Import Libraries
import numpy as np
# Checking Inputs
if np.prod(np.shape(shp3)) != 3:
raise Exception('Input: "shp3" should be the shape of a 3D image, e.g. (idx0, idx1, idx2). The value of "shp3" was: {}'.format(shp3))
if ~ np.all( np.isfinite( shp3 ) , axis=-1 ):
raise Exception('Input: "shp3" should contain all FINITE elements. The value of "shp3" was: {}'.format(shp3))
if ~ np.all(shp3 == np.array(shp3,np.int32)):
shp3 = np.array(shp3,np.int32)
print(" -- Warning: Input argument (shp3) has non-integer elements - Default: round to closest integers.")
if ~ np.all( np.greater(shp3 , 0) ):
raise Exception('Input: "shp3" has non-positive number of elements. The value of "shp3" is: {}'.format(shp3))
# Generating random Eigen-values
psi = np.random.rand(shp3[0],shp3[1],shp3[2],3) # psi is 4D!
psi_divisor = np.power( np.prod(psi,axis=-1) , 1/3.0 )
psi_divisor = psi_divisor.reshape( ( psi_divisor.shape[0],psi_divisor.shape[1],psi_divisor.shape[2], 1 ) )
psi = np.divide( psi , np.tile( psi_divisor , 3 ) )
# Correcting for possible non-finite values (nan/inf)
psiFINITE = np.all( np.isfinite( psi ) , axis=-1 )
psiFINITE = psiFINITE.reshape( ( psiFINITE.shape[0] , psiFINITE.shape[1] , psiFINITE.shape[2] , 1) )
psiFINITE = np.tile( psiFINITE , 3 )
psi[~psiFINITE] = 1.0
# Sorting in Ascending Order
psi = np.sort(psi, axis=-1)
# Generating 3 random Eigen-vectors
# First Eigen-vector
q1 = np.random.rand(shp3[0],shp3[1],shp3[2],3)
q1_norm = np.linalg.norm( q1 , 2 , axis=-1 )
q1_norm = q1_norm.reshape( (q1_norm.shape[0],q1_norm.shape[1],q1_norm.shape[2], 1 ) )
q1 = np.divide( q1 , np.tile( q1_norm , 3 ) )# unit-vector
# Correcting for possible non-finite values (nan/inf)
q1FINITE = np.all( np.isfinite( q1 ) , axis=-1 ) # 3D!
q10 = q1[:,:,:,0] # pointers!
q11 = q1[:,:,:,1] # pointers!
q12 = q1[:,:,:,2] # pointers!
q10[~q1FINITE] = 1.0
q11[~q1FINITE] = 0.0
q12[~q1FINITE] = 0.0
# Second Eigen-vector
q2 = np.random.rand(shp3[0],shp3[1],shp3[2],3)
dot_q2q1 = np.sum( np.multiply( q2 , q1 ) , axis=-1 )
dot_q2q1 = dot_q2q1.reshape( (dot_q2q1.shape[0],dot_q2q1.shape[1],dot_q2q1.shape[2], 1 ) )
q2 = q2 - ( np.multiply( np.tile( dot_q2q1 , 3 ) , q1 ) )
q2_norm = np.linalg.norm( q2 , 2 , axis=-1 )
q2_norm = q2_norm.reshape( (q2_norm.shape[0],q2_norm.shape[1],q2_norm.shape[2], 1 ) )
q2 = np.divide( q2 , np.tile( q2_norm , 3 ) )# unit-vector
# Correcting for possible non-finite values (nan/inf)
q2FINITE = np.all( np.isfinite( q2 ) , axis=-1 ) # 3D!
q20 = q2[:,:,:,0] # pointers!
q21 = q2[:,:,:,1] # pointers!
q22 = q2[:,:,:,2] # pointers!
q20[~q2FINITE] = 0.0
q21[~q2FINITE] = 1.0
q22[~q2FINITE] = 0.0
# Third Eigen-vector
q3 = np.cross( q1 , q2 , axis=-1)
q3_norm = np.linalg.norm( q3 , 2 , axis=-1 )
q3_norm = q3_norm.reshape( (q3_norm.shape[0],q3_norm.shape[1],q3_norm.shape[2], 1 ) )
q3 = np.divide( q3 , np.tile( q3_norm , 3 ) )# unit-vector
# Correcting for possible non-finite values (nan/inf)
q3FINITE = np.all( np.isfinite( q3 ) , axis=-1 ) # 3D!
q30 = q3[:,:,:,0] # pointers!
q31 = q3[:,:,:,1] # pointers!
q32 = q3[:,:,:,2] # pointers!
q30[~q3FINITE] = 0.0
q31[~q3FINITE] = 0.0
q32[~q3FINITE] = 1.0
El1,El2,El3,Ev1,Ev2,Ev3 = rglElvs( psi[:,:,:,0], psi[:,:,:,1], psi[:,:,:,2], q1, q2, q3 )
return El1,El2,El3,Ev1,Ev2,Ev3
def msk3_to_idx(msk3):
# Function to determine the C-like linear indices, given a logical mask of a 3D image.
#
# Call: idx = msk3_to_idx( msk3 )
#
# *Inputs*
# msk3: boolean mask of a 3D image of shape (dim0, dim1, dim2)
#
# *Outputs*
# idx: C-like linear indices corresponding to the 'True' voxels in msk3
# e.g. if msk3 has shape (3,3,3) and the only true value is in the middle,
# i.e. msk3[1,1,1] = True, the idx array will be a scalar equal to 13.
# Import Libraries
import numpy as np
# Checking Inputs
if np.prod(np.shape(np.shape(msk3))) != 3:
raise Exception('Input: "msk3" should have the shape of a 3D image, e.g. (idx0, idx1, idx2). The shape was: {}'.format( np.shape(msk3) ))
if msk3.dtype != bool:
raise Exception('Input: "msk3" should be logical, i.e. boolean type. The data type was: {}'.format( msk3.dtype ))
idx = np.array( np.ravel_multi_index( np.nonzero(msk3) , msk3.shape ) , dtype=np.int32)
return idx
def inimsk3Valid(shp3):
# Function to initialise the logical validity mask variables used in the compiled Shared Library
# This function set the data type to boolean, and returns the associated pointer.
#
# Call: (msk3Valid,msk3Valid_ptr) = inimsk3Valid( shp3 )
#
# *Inputs*
# shp3: shape of the 3D image as (dim0, dim1, dim2)
#
# *Outputs*
# msk3Valid: logical validity mask of 3D shape (shp3), initialised as 'True'
# msk3Valid_ptr: pointer of the logical validity mask.
# Import Libraries
import numpy as np
import ctypes
if np.prod(np.shape(shp3)) != 3:
raise Exception('Input: "shp3" should be the shape of a 3D image, e.g. (idx0, idx1, idx2). The value of "shp3" was: {}'.format(shp3))
if ~ np.all( np.isfinite( shp3 ) , axis=-1 ):
raise Exception('Input: "shp3" should contain all FINITE elements. The value of "shp3" was: {}'.format(shp3))
if ~ np.all(shp3 == np.array(shp3,np.int32)):
shp3 = np.array(shp3,np.int32)
print(" -- Warning: Input argument (shp3) has non-integer elements - Default: round to closest integers.")
if ~ np.all( np.greater(shp3 , 0) ):
raise Exception('Input: "shp3" has non-positive number of elements. The value of "shp3" is: {}'.format(shp3))
msk3Valid = np.ones( shp3 ,dtype=np.bool_)
msk3Valid_ptr = msk3Valid.ctypes.data_as( ctypes.POINTER( ctypes.c_bool ) )
return msk3Valid,msk3Valid_ptr
def iniElvs(shp3):
# Function to initialise the Eigen-Decomposition variables used in the compiled Shared Library
# This function set the data type to float32 (i.e. np.single).
#
# Call: (El1,El2,El3,
# Ev11,Ev12,Ev13,
# Ev21,Ev22,Ev23,
# Ev31,Ev32,Ev33) = iniElvs( shp3 )
#
# *Inputs*
# shp3: shape of the 3D image as (dim0, dim1, dim2)
#
# *Outputs*
# El1,El2,El3: Eigen-values of 3D shape (shp3)
# Ev11,Ev12,Ev13,...,Ev32,Ev33: Separate components of the 4D Eigen-vectors.
# Each output component has the same 3D shape (i.e. shp3).
# Import Libraries
import numpy as np
if np.prod(np.shape(shp3)) != 3:
raise Exception('Input: "shp3" should be the shape of a 3D image, e.g. (idx0, idx1, idx2). The value of "shp3" was: {}'.format(shp3))
if ~ np.all( np.isfinite( shp3 ) , axis=-1 ):
raise Exception('Input: "shp3" should contain all FINITE elements. The value of "shp3" was: {}'.format(shp3))
if ~ np.all(shp3 == np.array(shp3,np.int32)):
shp3 = np.array(shp3,np.int32)
print(" -- Warning: Input argument (shp3) has non-integer elements - Default: round to closest integers.")
if ~ np.all( np.greater(shp3 , 0) ):
raise Exception('Input: "shp3" has non-positive number of elements. The value of "shp3" is: {}'.format(shp3))
# Initialising Outputs
El1 = np.ones( shp3 ,dtype=np.single)
El2 = np.ones( shp3 ,dtype=np.single)
El3 = np.ones( shp3 ,dtype=np.single)
Ev11 = np.ones( shp3 ,dtype=np.single)
Ev12 = np.zeros( shp3 ,dtype=np.single)
Ev13 = np.zeros( shp3 ,dtype=np.single)
Ev21 = np.zeros( shp3 ,dtype=np.single)
Ev22 = np.ones( shp3 ,dtype=np.single)
Ev23 = np.zeros( shp3 ,dtype=np.single)
Ev31 = np.zeros( shp3 ,dtype=np.single)
Ev32 = np.zeros( shp3 ,dtype=np.single)
Ev33 = np.ones( shp3 ,dtype=np.single)
return El1,El2,El3,Ev11,Ev12,Ev13,Ev21,Ev22,Ev23,Ev31,Ev32,Ev33
def catEvs(Ev11,Ev12,Ev13,Ev21,Ev22,Ev23,Ev31,Ev32,Ev33):
# Function to concatenate the Eigen-Vector Components as 4D variables
#
# Call: (Ev1,Ev2,Ev3) = catEvs( Ev11,Ev12,Ev13,Ev21,Ev22,Ev23,Ev31,Ev32,Ev33 )
#
# *Inputs*
# Ev11,Ev12,Ev13,...,Ev32,Ev33: Separate components of the 4D Eigen-vectors.
# Each input component must have the same 3D shape (i.e. shp3).
#
# *Outputs*
# Ev1,Ev2,Ev3: Concatenated Eigen-vectors array of 4D shape (shp3,3)
# Import Libraries
import numpy as np
if ( (np.shape(Ev11) != np.shape(Ev12)) & (np.shape(Ev12) != np.shape(Ev13)) &
(np.shape(Ev13) != np.shape(Ev21)) & (np.shape(Ev21) != np.shape(Ev22)) &
(np.shape(Ev22) != np.shape(Ev23)) & (np.shape(Ev23) != np.shape(Ev31)) &
(np.shape(Ev31) != np.shape(Ev32)) & (np.shape(Ev32) != np.shape(Ev33)) ):
raise Exception('All inputs should have the *SAME* shape. The shape of the first argument is: {}'.format( np.shape(Ev11) ) )
shp3 = np.shape(Ev11)
Ev1 = np.concatenate( ( Ev11.reshape( (shp3[0], shp3[1], shp3[2], 1) ),
Ev12.reshape( (shp3[0], shp3[1], shp3[2], 1) ),
Ev13.reshape( (shp3[0], shp3[1], shp3[2], 1) ) ), axis=-1)
Ev2 = np.concatenate( ( Ev21.reshape( (shp3[0], shp3[1], shp3[2], 1) ),
Ev22.reshape( (shp3[0], shp3[1], shp3[2], 1) ),
Ev23.reshape( (shp3[0], shp3[1], shp3[2], 1) ) ), axis=-1)
Ev3 = np.concatenate( ( Ev31.reshape( (shp3[0], shp3[1], shp3[2], 1) ),
Ev32.reshape( (shp3[0], shp3[1], shp3[2], 1) ),
Ev33.reshape( (shp3[0], shp3[1], shp3[2], 1) ) ), axis=-1)
return Ev1,Ev2,Ev3
def sepEvs(Ev1,Ev2,Ev3):
# Function to separate the Eigen-Vector Components from 4D variables to 3D variables
# This function set the data type to float32 (i.e. np.single).
#
# Call: (Ev11,Ev12,Ev13,Ev21,Ev22,Ev23,Ev31,Ev32,Ev33) = sepEvs( Ev1,Ev2,Ev3 )
#
# *Inputs*
# Ev1,Ev2,Ev3: Concatenated Eigen-vectors array of 4D shape (shp3,3).
#
# *Outputs*
# Ev11,Ev12,Ev13,...,Ev32,Ev33: Separate components of the 4D Eigen-vectors.
# Each output components has the same 3D shape (i.e. shp3).
# Import Libraries
import numpy as np
if ( (np.shape(Ev1) != np.shape(Ev2)) & (np.shape(Ev2) != np.shape(Ev3)) ):
raise Exception('All inputs should have the *SAME* shape. The shape of the first argument is: {}'.format( np.shape(Ev1) ) )
shp4 = np.shape(Ev1)
if ( np.prod(np.shape(shp4)) != 4 ):
raise Exception('All Eigen-vectors must have the shape of a 4D image. The shape of the first argument is: {}'.format( np.shape(Ev1) ) )
if ( shp4[-1] != 3 ):
raise Exception('All Eigen-vectors must have the 3 elements in the last dimension. The number of elements in the last dimension is: {}'.format( shp4[-1] ) )
Ev11 = np.array( Ev1[:,:,:,0], dtype=np.single);
Ev12 = np.array( Ev1[:,:,:,1], dtype=np.single);
Ev13 = np.array( Ev1[:,:,:,2], dtype=np.single);
Ev21 = np.array( Ev2[:,:,:,0], dtype=np.single);
Ev22 = np.array( Ev2[:,:,:,1], dtype=np.single);
Ev23 = np.array( Ev2[:,:,:,2], dtype=np.single);
Ev31 = np.array( Ev3[:,:,:,0], dtype=np.single);
Ev32 = np.array( Ev3[:,:,:,1], dtype=np.single);
Ev33 = np.array( Ev3[:,:,:,2], dtype=np.single);
return Ev11,Ev12,Ev13,Ev21,Ev22,Ev23,Ev31,Ev32,Ev33
def rglElvs(El1,El2,El3,Ev1,Ev2,Ev3):
# Function to regularise the Eigen-decomposition variables.
# This function set the data type to float32 (i.e. np.single).
#
# Call: (El1,El2,El3,Ev1,Ev2,Ev3) = rglElvs( El1,El2,El3,Ev1,Ev2,Ev3 )
#
# *Inputs*
# El1,El2,El3: Eigen-values of 3D shape (shp3).
# Ev1,Ev2,Ev3: Eigen-vectors of 4D shape (shp3,3).
#
# *Outputs*
# Same as Inputs, but in float32 data type
# Import Libraries
import numpy as np
if ( (np.shape(El1) != np.shape(El2)) & (np.shape(El2) != np.shape(El3)) ):
raise Exception('All Eigen-values should have the *SAME* shape. The shape of the first Eigen-value is: {}'.format( np.shape(El1) ) )
shp3 = np.shape(El1)
if ( np.prod(np.shape(shp3)) != 3 ):
raise Exception('All Eigen-values must have the shape of a 3D image. The shape of the first Eigen-value is: {}'.format( np.shape(El1) ) )
if ( (np.shape(Ev1) != np.shape(Ev2)) & (np.shape(Ev2) != np.shape(Ev3)) ):
raise Exception('All Eigen-vectors should have the *SAME* shape. The shape of the first Eigen-vector is: {}'.format( np.shape(Ev1) ) )
shp4 = np.shape(Ev1)
if ( np.prod(np.shape(shp4)) != 4 ):
raise Exception('All Eigen-vectors must have the shape of a 4D image. The shape of the first argument is: {}'.format( np.shape(Ev1) ) )
if ( (shp3[0] != shp4[0]) & (shp3[1] != shp4[1]) & (shp3[2] != shp4[2])):
raise Exception('Eigen-values and Eigen-vectors shapes do not match the shape of the underlying 3D image. The shapes of the first Eigen-value and Eigen-vector is: {}'.format( [np.shape(El1),np.shape(Ev1)] ) )
if ( shp4[-1] != 3 ):
raise Exception('All Eigen-vectors must have 3 elements in the last dimension. The number of elements in the last dimension is: {}'.format( shp4[-1] ) )
El1_out = np.array( El1 , dtype=np.single )
El2_out = np.array( El2 , dtype=np.single )
El3_out = np.array( El3 , dtype=np.single )
Ev1_out = np.array( Ev1 , dtype=np.single )
Ev2_out = np.array( Ev2 , dtype=np.single )
Ev3_out = np.array( Ev3 , dtype=np.single )
return El1_out,El2_out,El3_out,Ev1_out,Ev2_out,Ev3_out
def ptrElvs(El1,El2,El3,Ev11,Ev12,Ev13,Ev21,Ev22,Ev23,Ev31,Ev32,Ev33):
# Function to determine the pointers to the Eigen-Decomposition variables used in the compiled Shared Library
#
# Call: (El1_ptr,El2_ptr,El3_ptr,
# Ev11_ptr,Ev12_ptr,Ev13_ptr,
# Ev21_ptr,Ev22_ptr,Ev23_ptr,
# Ev31_ptr,Ev32_ptr,Ev33_ptr) = ptrElvs( El1,El2,El3,
# Ev11,Ev12,Ev13,
# Ev21,Ev22,Ev23,
# Ev31,Ev32,Ev33 )
#
# *Inputs*
# El1,El2,El3: Eigen-values of shape (shp3)
# Ev11,Ev12, Ev13,...,Ev32,Ev33: Separate components of the 4D Eigen-vectors.
# Each input component has the same 3D shape (i.e. shp3).
#
# *Outputs*
# El1_ptr,El2_ptr,El3_ptr,..., Ev33_ptr: C-like pointers to the input 3D arrays.
# Import Libraries
import numpy as np
import ctypes
if ( (np.shape(El1) != np.shape(El2)) & (np.shape(El2) != np.shape(El3)) & (np.shape(El3) != np.shape(Ev11)) &
(np.shape(Ev11) != np.shape(Ev12)) & (np.shape(Ev12) != np.shape(Ev13)) &
(np.shape(Ev13) != np.shape(Ev21)) & (np.shape(Ev21) != np.shape(Ev22)) &
(np.shape(Ev22) != np.shape(Ev23)) & (np.shape(Ev23) != np.shape(Ev31)) &
(np.shape(Ev31) != np.shape(Ev32)) & (np.shape(Ev32) != np.shape(Ev33)) ):
raise Exception('All inputs should have the *SAME* shape. The shape of the first argument is: {}'.format( np.shape(El1) ) )
if ( (El1.dtype != 'float32') & (El2.dtype != 'float32') & (El3.dtype != 'float32') &
(Ev11.dtype != 'float32') & (Ev12.dtype != 'float32') & (Ev13.dtype != 'float32') &
(Ev21.dtype != 'float32') & (Ev22.dtype != 'float32') & (Ev23.dtype != 'float32') &
(Ev31.dtype != 'float32') & (Ev32.dtype != 'float32') & (Ev33.dtype != 'float32') ):
raise Exception('All inputs must have the same *DATA TYPE* as float32 (i.e. numpy.single). The data type of the first argument is: {}'.format( El1.dtype ) )
El1_ptr = El1.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
El2_ptr = El2.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
El3_ptr = El3.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
Ev11_ptr = Ev11.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
Ev12_ptr = Ev12.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
Ev13_ptr = Ev13.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
Ev21_ptr = Ev21.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
Ev22_ptr = Ev22.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
Ev23_ptr = Ev23.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
Ev31_ptr = Ev31.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
Ev32_ptr = Ev32.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
Ev33_ptr = Ev33.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
return El1_ptr,El2_ptr,El3_ptr,Ev11_ptr,Ev12_ptr,Ev13_ptr,Ev21_ptr,Ev22_ptr,Ev23_ptr,Ev31_ptr,Ev32_ptr,Ev33_ptr
def ini6Cmps(shp3):
# Function to initialise the 6 Indep. Component variables used in the compiled Shared Library
#
# Call: (C11,C12,C13,C22,C23,C33) = ini6Cmps( shp3 )
#
# *Inputs*
# shp3: shape of the 3D array
#
# *Outputs*
# C11,C12,C13,C22,C23,C33: 3D arrays with initialised values of shape shp3
# they represent the 6 independent components (e.g. partial derivatives of a Hessian matrix, or
# the 6 linearly independent tensorial components in the EUCLIDEAN space,
# evaluated on a 3D image at voxel (or location) [i,j,k]
# NB: The initialisation sets the outputs as *Isotropic*
# Import Libraries
import numpy as np
# Checking Inputs
if np.prod(np.shape(shp3)) != 3:
raise Exception('Input: "shp3" should be the shape of a 3D image, e.g. (idx0, idx1, idx2). The value of "shp3" was: {}'.format(shp3))
if ~ np.all( np.isfinite( shp3 ) , axis=-1 ):
raise Exception('Input: "shp3" should contain all FINITE elements. The value of "shp3" was: {}'.format(shp3))
if ~ np.all(shp3 == np.array(shp3,np.int32)):
shp3 = np.array(shp3,np.int32)
print(" -- Warning: Input argument (shp3) has non-integer elements - Default: round to closest integers.")
if ~ np.all( np.greater(shp3 , 0) ):
raise Exception('Input: "shp3" has non-positive number of elements. The value of "shp3" is: {}'.format(shp3))
C11 = np.ones(shp3,dtype=np.single)
C12 = np.zeros(shp3,dtype=np.single)
C13 = np.zeros(shp3,dtype=np.single)
C22 = np.ones(shp3,dtype=np.single)
C23 = np.zeros(shp3,dtype=np.single)
C33 = np.ones(shp3,dtype=np.single)
return C11,C12,C13,C22,C23,C33
def ini6CmpsLE(shp3):
# Function to initialise the 6 Indep. Component variables in the LOG-EUCLIDEAN space
# used in the compiled Shared Library
#
# Call: (C11LE,C12LE,C13LE,C22LE,C23LE,C33LE) = ini6CmpsLE( shp3 )
#
# *Inputs*
# shp3: shape of the 3D image as (dim0, dim1, dim2)
#
# *Outputs*
# C11LE,C12LE,C13LE,C22LE,C23LE,C33LE: 3D arrays with initialised values of shape shp3
# they represent the 6 linearly independent components of a tensor field in 3D
# in the *LOG-EUCLIDEAN* space.
# NB: The initialisation sets the outputs as *Isotropic* in the LOG-EUCLIDEAN space
# Import Libraries
import numpy as np
# Checking Inputs
if np.prod(np.shape(shp3)) != 3:
raise Exception('Input: "shp3" should be the shape of a 3D image, e.g. (idx0, idx1, idx2). The value of "shp3" was: {}'.format(shp3))
if ~ np.all( np.isfinite( shp3 ) , axis=-1 ):
raise Exception('Input: "shp3" should contain all FINITE elements. The value of "shp3" was: {}'.format(shp3))
if ~ np.all(shp3 == np.array(shp3,np.int32)):
shp3 = np.array(shp3,np.int32)
print(" -- Warning: Input argument (shp3) has non-integer elements - Default: round to closest integers.")
if ~ np.all( np.greater(shp3 , 0) ):
raise Exception('Input: "shp3" has non-positive number of elements. The value of "shp3" is: {}'.format(shp3))
C11LE = np.zeros(shp3,dtype=np.single)
C12LE = np.zeros(shp3,dtype=np.single)
C13LE = np.zeros(shp3,dtype=np.single)
C22LE = np.zeros(shp3,dtype=np.single)
C23LE = np.zeros(shp3,dtype=np.single)
C33LE = np.zeros(shp3,dtype=np.single)
return C11LE,C12LE,C13LE,C22LE,C23LE,C33LE
def rgl6Cmps(C11,C12,C13,C22,C23,C33):
# Function to regularise the 6 Indep. Component variables used in the compiled Shared Library.
# This function set the data type to float32 (i.e. np.single).
#
# Call: (C11,C12,C13,C22,C23,C33) = rgl6Cmps( C11,C12,C13,C22,C23,C33 )
#
# *Inputs*
# C11,C12,C13,C22,C23,C33: 3D arrays with 6 independent (C)omponents.
# All C11,C12,...,C33 must have the same shape: shp3 = C11.shape,
# corresponding to a 3D image for each voxel (or location) at [i,j,k].
#
# *Outputs*
# Same as Inputs, but in float32 data type
# Import Libraries
import numpy as np
if ( (np.shape(C11) != np.shape(C12)) &
(np.shape(C12) != np.shape(C13)) &
(np.shape(C13) != np.shape(C22)) &
(np.shape(C22) != np.shape(C23)) &
(np.shape(C23) != np.shape(C33)) ):
raise Exception('All inputs should have the *SAME* shape. The shape of the first argument is: {}'.format( np.shape(C11) ) )
shp3 = np.shape(C11)
if np.prod(np.shape(shp3)) != 3:
raise Exception('Inputs should all have the shape of a 3D image, e.g. (idx0, idx1, idx2). The shape was: {}'.format(shp3))
C11_out = np.array(C11,dtype=np.single)
C12_out = np.array(C12,dtype=np.single)
C13_out = np.array(C13,dtype=np.single)
C22_out = np.array(C22,dtype=np.single)
C23_out = np.array(C23,dtype=np.single)
C33_out = np.array(C33,dtype=np.single)
return C11_out,C12_out,C13_out,C22_out,C23_out,C33_out
def ptr6Cmps(C11,C12,C13,C22,C23,C33):
# Function to determine the pointers to the 6 Indep. Component variables used in the compiled Shared Library
#
# (C11_ptr,C12_ptr,C13_ptr,
# C22_ptr,C23_ptr,C33_ptr) = ptr6Cmps( C11,C12,C13,C22,C23,C33 )
#
# *Inputs*
# C11,C12,C13,C22,C23,C33: 3D arrays with 6 independent (C)omponents.
# All C11,C12,...,C33 must have the same shape: shp3 = C11.shape,
# corresponding to a 3D image for each voxel (or location) at [i,j,k].
#
# *Outputs*
# C11_ptr,C12_ptr,...,C33_ptr: C-like pointers to the 3D arrays with 6 independent components.
# Import Libraries
import numpy as np
import ctypes
if ( (np.shape(C11) != np.shape(C12)) &
(np.shape(C12) != np.shape(C13)) &
(np.shape(C13) != np.shape(C22)) &
(np.shape(C22) != np.shape(C23)) &
(np.shape(C23) != np.shape(C33)) ):
raise Exception('All inputs should have the *SAME* shape. The shape of the first argument is: {}'.format( np.shape(C11) ) )
if ( (C11.dtype != 'float32') & (C12.dtype != 'float32') & (C13.dtype != 'float32') &
(C22.dtype != 'float32') & (C23.dtype != 'float32') & (C33.dtype != 'float32') ):
raise Exception('All inputs must have the same *DATA TYPE* as float32 (i.e. numpy.single). The data type of the first argument is: {}'.format( C11.dtype ) )
C11_ptr = C11.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
C12_ptr = C12.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
C13_ptr = C13.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
C22_ptr = C22.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
C23_ptr = C23.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
C33_ptr = C33.ctypes.data_as( ctypes.POINTER( ctypes.c_float ) )
return C11_ptr,C12_ptr,C13_ptr,C22_ptr,C23_ptr,C33_ptr
def mngIdxs(idx,shp3):
# Function to manage indexing of voxels to be processed in the 3D image (and associated Tensor).
# This function is meant to harmonise indices values compatibly with a C-compiled shared library.
#
# Call: (idx,idx_ptr,numel,numel_ptr) = mngIdxs( idx,shp3 )
#
# *Inputs*
# idx: scalar value identically equal to -1 (negative one) *OR*
# 1D array containing unique C-like indices of selected voxel locations within the 3D image shape range.
# shp3: shape of the 3D image
#
# *Outputs*
# idx: updated 1D array containing unique C-like indices of
# *ALL* or *SELECTED* voxel locations within the 3D image shape range.
# idx_ptr: C-like pointer to the 1D updated array of indices (idx)
# numel: scalar number of elements in the updated 1D array of indices (idx)
# numel_ptr: C-like pointer to the scalar number of elements (numel)
# Import Libraries
import numpy as np
import ctypes
# Checking Inputs
if np.prod(np.shape(shp3)) != 3:
raise Exception('Input: "shp3" should be the shape of a 3D image, e.g. (idx0, idx1, idx2). The value of "shp3" was: {}'.format(shp3))
if ~ np.all( np.isfinite( shp3 ) , axis=-1 ):
raise Exception('Input: "shp3" should contain all FINITE elements. The value of "shp3" was: {}'.format(shp3))
if ~ np.all(shp3 == np.array(shp3,np.int32)):
shp3 = np.array(shp3,np.int32)
print(" -- Warning: Input argument (shp3) has non-integer elements - Default: round to closest integers.")
if ~ np.all( np.greater(shp3 , 0) ):
raise Exception('Input: "shp3" has non-positive number of elements. The value of "shp3" is: {}'.format(shp3))
# Remove possible repetitions
idx = np.unique(np.array(idx))
if (np.prod(np.shape(idx)) == 1) & np.all(idx == -1):
# CASE: process *ALL* voxels in the 3D image
numel = np.array(np.prod(shp3), dtype=np.int32 ) #IMPORTANT: data type must be int32
numel_ptr = numel.ctypes.data_as( ctypes.POINTER( ctypes.c_int ) )
idx = np.array(np.arange(0,numel), dtype=np.int32 ) #IMPORTANT: data type must be int32
idx_ptr = idx.ctypes.data_as( ctypes.POINTER( ctypes.c_int ) )
else:
# CASE: process *SELECTED* voxels in the 3D image
# Checking that the selected voxel indices are within the 3D image shape range
if not ( np.all( np.greater_equal(idx , 0) ) & np.all( np.less(idx , np.prod(shp3)) ) ):
raise Exception('The parsed indices (idx) are *OUT* of the 3D image. The parsed idx is: {}'.format( idx ) )
idx = np.array(idx, dtype=np.int32 ) #IMPORTANT: data type must be int32
idx_ptr = idx.ctypes.data_as( ctypes.POINTER( ctypes.c_int ) )
numel = np.array(np.prod( idx.shape ), dtype=np.int32 ) #IMPORTANT: data type must be int32
numel_ptr = numel.ctypes.data_as( ctypes.POINTER( ctypes.c_int ) )
return idx,idx_ptr,numel,numel_ptr
def mpT3_eig(H11,H12,H13,H22,H23,H33,idx):
# Function to determine the Eigen-Decomposition in 3D
#
# Call: (El1,El2,El3,Ev1,Ev2,Ev3,msk3Valid) = mpT3_eig( H11,H12,H13,H22,H23,H33,idx )
#
# *Inputs*
# H11,H12,H13,H22,H23,H33 or [T11,T12,T13,T22,T23,T33]:
# 3D arrays with 6 independent (H)essian values or (T)ensorial components.
# All H11,H12,...,H33 must have the same shape: shp3 = H11.shape,
# corresponding to a 3D image for each voxel (or location) at [i,j,k].
# idx: 1-D array of C-like linear indices obtained from the function 'msk3_to_idx'
# if idx is a scalar equal to -1, *ALL* indices are considered,
# i.e. idx = np.array(np.arange(0,numel)), with numel = np.prod(shp3)
# NB: voxel locations not selected by the array of indices (idx) will be considered
# (and returned) as *isotropic* tensors by default.
#
# * Outputs *
# El1,El2,El3: 3D arrays with values of shape shp3.
# They represent the 3 Eigen-values associated to a
# 3D image at voxel (or location) [i,j,k].
# Ev1,Ev2,Ev3: 4D arrays with values of shape (shp3,3).
# They represent the 3 Eigen-vectors associated to the
# eigen-values of a 3D image at voxel (or location) [i,j,k].
#
# *** NB: Eigen-values and associated Eigen-vectors are sorted to satisfy
# the condition: abs(El1) <= abs(El2) <= abs(El3)
#
# *** This is a python wrapper for the shared library: libmpT3libs.so ***
# *** The C-compiled shared library automatically enables and configures
# *** multi-core processing for maximal performance using OpenMP libraries.
# Import Libraries
import numpy as np
import ctypes
# Loading Shared Library
mpT3libs = ctypes.cdll.LoadLibrary("./mpT3libs/libmpT3libs.so") #check path here!
# Retrieving 3D image shape
shp3 = np.shape(H11)
# Managing voxel indices and pointers
(idx,idx_ptr,
numel,numel_ptr) = mngIdxs(idx,shp3)
# Regularising Inputs (variables and pointers)
(H11,H12,H13,H22,H23,H33) = rgl6Cmps(H11,H12,H13,H22,H23,H33)
# Determining Input Pointers
(H11_ptr,H12_ptr,H13_ptr,
H22_ptr,H23_ptr,H33_ptr) = ptr6Cmps(H11,H12,H13,H22,H23,H33)
# Initialising Outputs
(El1,El2,El3,
Ev11,Ev12,Ev13,
Ev21,Ev22,Ev23,
Ev31,Ev32,Ev33) = iniElvs(shp3)
# Determining Output Pointers
(El1_ptr,El2_ptr,El3_ptr,
Ev11_ptr,Ev12_ptr,Ev13_ptr,
Ev21_ptr,Ev22_ptr,Ev23_ptr,
Ev31_ptr,Ev32_ptr,Ev33_ptr) = ptrElvs(El1,El2,El3,
Ev11,Ev12,Ev13,
Ev21,Ev22,Ev23,
Ev31,Ev32,Ev33)
# Initialising the Output Validity Mask
(msk3Valid,msk3Valid_ptr) = inimsk3Valid(shp3)
# Calling the C-compiled function from the shared library
mpT3libs.mpT3_eig(H11_ptr,H12_ptr,H13_ptr,
H22_ptr,H23_ptr,H33_ptr,
El1_ptr,El2_ptr,El3_ptr,
Ev11_ptr,Ev12_ptr,Ev13_ptr,
Ev21_ptr,Ev22_ptr,Ev23_ptr,
Ev31_ptr,Ev32_ptr,Ev33_ptr,
msk3Valid_ptr, idx_ptr, numel_ptr)
# Concatenating the Eigen-vectors components into 4D variables of shape (shp3,3)
Ev1,Ev2,Ev3 = catEvs(Ev11,Ev12,Ev13,Ev21,Ev22,Ev23,Ev31,Ev32,Ev33)
return El1,El2,El3,Ev1,Ev2,Ev3,msk3Valid
def mpT3_to_T3LIC(El1,El2,El3,Ev1,Ev2,Ev3,idx):
# Function to convert the 3D Tensor field from its Eigen-Decomposition form
# to its 6 (L)inearly (I)ndependent (C)omponent form.
#
# Call: (T11,T12,T13,T22,T23,T33) = mpT3_to_T3LIC( El1,El2,El3,Ev1,Ev2,Ev3,idx )
#
# *Inputs*
# El1,El2,El3: 3D arrays with values of shape shp3.
# They represent the 3 Eigen-values associated to a
# Tensor field of a 3D image at voxel (or location) [i,j,k].
# Ev1,Ev2,Ev3: 4D arrays with values of shape (shp3,3).
# They represent the 3 Eigen-vectors associated to the respective
# Eigen-values of a Tensor field of 3D image at voxel (or location) [i,j,k].
# idx: 1-D array of C-like linear indices obtained from the function 'msk3_to_idx'
# if idx is a scalar equal to -1, *ALL* indices are considered,
# i.e. idx = np.array(np.arange(0,numel)), with numel = np.prod(shp3).
# NB: voxel locations not selected by the array of indices (idx) will be considered
# (and returned) as *isotropic* tensors by default.
#
# * Outputs *
# T11,T12,T13,T22,T23,T33:
# 3D arrays with 6 independent (T)ensorial components.
# All T11,T12,...,T33 must have the same shape (shp3),
# corresponding to a 3D image for each voxel (or location) at [i,j,k].
#
# *** This is a python wrapper for the shared library: libmpT3libs.so ***
# *** The C-compiled shared library automatically enables and configures
# *** multi-core processing for maximal performance using OpenMP libraries.
# Import Libraries
import numpy as np
import ctypes
# Loading Shared Library
mpT3libs = ctypes.cdll.LoadLibrary("./mpT3libs/libmpT3libs.so")
# Retrieving 3D image shape
shp3 = np.shape(El1)
# Managing voxel indices and pointers
(idx,idx_ptr,
numel,numel_ptr) = mngIdxs(idx,shp3)
# Regularising inputs
El1,El2,El3,Ev1,Ev2,Ev3 = rglElvs(El1,El2,El3,Ev1,Ev2,Ev3)
# Separating Eigen-vectors components (for processing)
(Ev11,Ev12,Ev13,
Ev21,Ev22,Ev23,
Ev31,Ev32,Ev33) = sepEvs(Ev1,Ev2,Ev3)
# Determining Input Pointers
(El1_ptr,El2_ptr,El3_ptr,
Ev11_ptr,Ev12_ptr,Ev13_ptr,
Ev21_ptr,Ev22_ptr,Ev23_ptr,
Ev31_ptr,Ev32_ptr,Ev33_ptr) = ptrElvs(El1,El2,El3,
Ev11,Ev12,Ev13,
Ev21,Ev22,Ev23,
Ev31,Ev32,Ev33)
# Initialising outputs
T11,T12,T13,T22,T23,T33 = ini6Cmps(shp3)
# Determining Output Pointers
(T11_ptr,T12_ptr,T13_ptr,
T22_ptr,T23_ptr,T33_ptr) = ptr6Cmps(T11,T12,T13,T22,T23,T33)
# Calling the C-compiled function from the shared library
mpT3libs.mpT3_to_T3LIC(El1_ptr,El2_ptr,El3_ptr,
Ev11_ptr,Ev12_ptr,Ev13_ptr,
Ev21_ptr,Ev22_ptr,Ev23_ptr,
Ev31_ptr,Ev32_ptr,Ev33_ptr,
T11_ptr,T12_ptr,T13_ptr,
T22_ptr,T23_ptr,T33_ptr,
idx_ptr, numel_ptr)
return T11,T12,T13,T22,T23,T33
def mpT3_to_T3LE(El1,El2,El3,Ev1,Ev2,Ev3,idx):
# Function to convert the 3D Tensor field from its Eigen-Decomposition form
# to its 6 linearly independent components in the (L)OG-(E)UCLIDEAN space.
#
# Call: (T11LE,T12LE,T13LE,T22LE,T23LE,T33LE) = mpT3_to_T3LE( El1,El2,El3,Ev1,Ev2,Ev3,idx )
#
# *Inputs*
# El1,El2,El3: 3D arrays with values of shape shp3.
# They represent the 3 Eigen-values associated to a
# Tensor field of a 3D image at voxel (or location) [i,j,k].
# Ev1,Ev2,Ev3: 4D arrays with values of shape (shp3,3).
# They represent the 3 Eigen-vectors associated to the respective
# Eigen-values of a Tensor field of 3D image at voxel (or location) [i,j,k].
# idx: 1-D array of C-like linear indices obtained from the function 'msk3_to_idx'
# if idx is a scalar equal to -1, *ALL* indices are considered,
# i.e. idx = np.array(np.arange(0,numel)), with numel = np.prod(shp3).
#
# * Outputs *
# T11LE,T12LE,T13LE,T22LE,T23LE,T33LE:
# 3D arrays with 6 independent (T)ensorial components in the LOG-EUCLIDEAN space.
# All T11LE,T12LE,...,T33LE must have the same shape (shp3),
# corresponding to a 3D image for each voxel (or location) at [i,j,k].
#
# *** This is a python wrapper for the shared library: libmpT3libs.so ***
# *** The C-compiled shared library automatically enables and configures
# *** multi-core processing for maximal performance using OpenMP libraries.
# Import Libraries
import numpy as np
import ctypes
# Loading Shared Library
mpT3libs = ctypes.cdll.LoadLibrary("./mpT3libs/libmpT3libs.so")
# Retrieving 3D image shape
shp3 = np.shape(El1)
# Managing voxel indices and pointers
(idx,idx_ptr,
numel,numel_ptr) = mngIdxs(idx,shp3)
# Regularising inputs
El1,El2,El3,Ev1,Ev2,Ev3 = rglElvs(El1,El2,El3,Ev1,Ev2,Ev3)
# Separating Eigen-vectors components (for processing)
(Ev11,Ev12,Ev13,
Ev21,Ev22,Ev23,
Ev31,Ev32,Ev33) = sepEvs(Ev1,Ev2,Ev3)
# Determining Input Pointers
(El1_ptr,El2_ptr,El3_ptr,
Ev11_ptr,Ev12_ptr,Ev13_ptr,
Ev21_ptr,Ev22_ptr,Ev23_ptr,
Ev31_ptr,Ev32_ptr,Ev33_ptr) = ptrElvs(El1,El2,El3,
Ev11,Ev12,Ev13,
Ev21,Ev22,Ev23,
Ev31,Ev32,Ev33)
# Initialising outputs
T11LE,T12LE,T13LE,T22LE,T23LE,T33LE = ini6CmpsLE(shp3)
# Determining Output Pointers
(T11LE_ptr,T12LE_ptr,T13LE_ptr,
T22LE_ptr,T23LE_ptr,T33LE_ptr) = ptr6Cmps(T11LE,T12LE,T13LE,T22LE,T23LE,T33LE)
# Calling the C-compiled function from the shared library
mpT3libs.mpT3_to_T3LE(El1_ptr,El2_ptr,El3_ptr,
Ev11_ptr,Ev12_ptr,Ev13_ptr,
Ev21_ptr,Ev22_ptr,Ev23_ptr,
Ev31_ptr,Ev32_ptr,Ev33_ptr,
T11LE_ptr,T12LE_ptr,T13LE_ptr,
T22LE_ptr,T23LE_ptr,T33LE_ptr,
idx_ptr, numel_ptr)
return T11LE,T12LE,T13LE,T22LE,T23LE,T33LE
def mpT3LIC_to_T3(T11,T12,T13,T22,T23,T33,idx):
# Function to convert the 3D Tensor field from its 6 (L)inearly (I)ndependent (C)omponent
# form to its Eigen-Decomposition form, both in the EUCLIDEAN space.
#
# Call: (El1,El2,El3,Ev1,Ev2,Ev3,msk3Valid) = mpT3LIC_to_T3( T11,T12,T13,T22,T23,T33,idx )
#
# *Inputs*
# T11,T12,T13,T22,T23,T33:
# 3D arrays with 6 linearly independent component of a (T)ensor field.
# All T11,T12,...,T33 must have the same shape (shp3),
# corresponding to a 3D image for each voxel (or location) at [i,j,k].
# idx: 1-D array of C-like linear indices obtained from the function 'msk3_to_idx'
# if idx is a scalar equal to -1, *ALL* indices are considered,
# i.e. idx = np.array(np.arange(0,numel)), with numel = np.prod(shp3).
# NB: voxel locations not selected by the array of indices (idx) will be considered
# (and returned) as *isotropic* tensors by default.
#
# * Outputs *
# El1,El2,El3: 3D arrays with values of shape shp3.
# They represent the 3 Eigen-values associated to a
# Tensor field of a 3D image at voxel (or location) [i,j,k].
# Ev1,Ev2,Ev3: 4D arrays with values of shape (shp3,3).
# They represent the 3 Eigen-vectors associated to the respective
# Eigen-values of a Tensor field of 3D image at voxel (or location) [i,j,k].
#
# *** This is a python wrapper for the shared library: libmpT3libs.so ***
# *** The C-compiled shared library automatically enables and configures
# *** multi-core processing for maximal performance using OpenMP libraries.
# Import Libraries
import numpy as np
import ctypes
# Loading Shared Library
mpT3libs = ctypes.cdll.LoadLibrary("./mpT3libs/libmpT3libs.so")
# Retrieving 3D image shape
shp3 = np.shape(T11)
# Managing voxel indices and pointers
(idx,idx_ptr,
numel,numel_ptr) = mngIdxs(idx,shp3)
# Regularising Inputs
T11,T12,T13,T22,T23,T33 = rgl6Cmps(T11,T12,T13,T22,T23,T33)
# Determining Input Pointers
(T11_ptr,T12_ptr,T13_ptr,
T22_ptr,T23_ptr,T33_ptr) = ptr6Cmps(T11,T12,T13,T22,T23,T33)
# Initialising Outputs
(El1,El2,El3,
Ev11,Ev12,Ev13,
Ev21,Ev22,Ev23,
Ev31,Ev32,Ev33) = iniElvs(shp3)
# Determining Output Pointers
(El1_ptr,El2_ptr,El3_ptr,
Ev11_ptr,Ev12_ptr,Ev13_ptr,
Ev21_ptr,Ev22_ptr,Ev23_ptr,
Ev31_ptr,Ev32_ptr,Ev33_ptr) = ptrElvs(El1,El2,El3,
Ev11,Ev12,Ev13,
Ev21,Ev22,Ev23,
Ev31,Ev32,Ev33)
# Initialising the Output Validity Mask
(msk3Valid,msk3Valid_ptr) = inimsk3Valid(shp3)
# Calling the C-compiled function from the shared library
mpT3libs.mpT3LIC_to_T3(T11_ptr,T12_ptr,T13_ptr,
T22_ptr,T23_ptr,T33_ptr,
El1_ptr,El2_ptr,El3_ptr,
Ev11_ptr,Ev12_ptr,Ev13_ptr,
Ev21_ptr,Ev22_ptr,Ev23_ptr,
Ev31_ptr,Ev32_ptr,Ev33_ptr,
msk3Valid_ptr, idx_ptr, numel_ptr)
# Concatenating the Eigen-vectors components into 4D variables of shape (shp3,3)
Ev1,Ev2,Ev3 = catEvs(Ev11,Ev12,Ev13,Ev21,Ev22,Ev23,Ev31,Ev32,Ev33)
return El1,El2,El3,Ev1,Ev2,Ev3,msk3Valid
def mpT3LE_to_T3(T11LE,T12LE,T13LE,T22LE,T23LE,T33LE,idx):
# Function to convert the 3D Tensor field from its 6 linearly independent components
# in the (L)OG-(E)UCLIDEAN space to its Eigen-Decomposition form in the EUCLIDEAN space.
#
# Call: (El1,El2,El3,Ev1,Ev2,Ev3) = mpT3LE_to_T3( T11LE,T12LE,T13LE,T22LE,T23LE,T33LE,idx )
#
# *Inputs*
# T11LE,T12LE,T13LE,T22LE,T23LE,T33LE:
# 3D arrays with 6 independent (T)ensorial components in the LOG-EUCLIDEAN space.
# All T11LE,T12LE,...,T33LE must have the same shape (shp3),