-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathqaoa.py
266 lines (224 loc) · 10.8 KB
/
qaoa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
##############################################################################
# Copyright 2016-2017 Rigetti Computing
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from collections import Counter
from scipy import optimize
import numpy as np
from grove.pyvqe.vqe import VQE
import pyquil.quil as pq
from pyquil.gates import H
from pyquil.paulis import exponential_map, PauliSum
from functools import reduce
from _quantum_computer import _measure_bitstrings
class QAOA(object):
def __init__(self, qvm, qubits, steps=1, init_betas=None,
init_gammas=None, cost_ham=None,
ref_ham=None, driver_ref=None,
minimizer=None, minimizer_args=None,
minimizer_kwargs=None, rand_seed=None,
vqe_options=None, store_basis=False):
"""
QAOA object.
Contains all information for running the QAOA algorthm to find the
ground state of the list of cost clauses.
N.B. This only works if all the terms in the cost Hamiltonian commute with each other.
:param qvm: (Connection) The qvm connection to use for the algorithm.
:param qubits: (list of ints) The number of qubits to use for the algorithm.
:param steps: (int) The number of mixing and cost function steps to use.
Default=1.
:param init_betas: (list) Initial values for the beta parameters on the
mixing terms. Default=None.
:param init_gammas: (list) Initial values for the gamma parameters on the
cost function. Default=None.
:param cost_ham: list of clauses in the cost function. Must be
PauliSum objects
:param ref_ham: list of clauses in the mixer function. Must be
PauliSum objects
:param driver_ref: (pyQuil.quil.Program()) object to define state prep
for the starting state of the QAOA algorithm.
Defaults to tensor product of \|+> states.
:param rand_seed: integer random seed for initial betas and gammas
guess.
:param minimizer: (Optional) Minimization function to pass to the
Variational-Quantum-Eigensolver method
:param minimizer_kwargs: (Optional) (dict) of optional arguments to pass to
the minimizer. Default={}.
:param minimizer_args: (Optional) (list) of additional arguments to pass to the
minimizer. Default=[].
:param minimizer_args: (Optional) (list) of additional arguments to pass to the
minimizer. Default=[].
:param vqe_options: (optinal) arguents for VQE run.
:param store_basis: (optional) boolean flag for storing basis states.
Default=False.
"""
# Seed the random number generator, if a seed is provided.
if rand_seed is not None:
np.random.seed(rand_seed)
# Set attributes values, considering their defaults
self.qvm = qvm
self.steps = steps
self.qubits = qubits
self.nstates = 2 ** len(qubits)
self.cost_ham = cost_ham or []
self.ref_ham = ref_ham or []
self.minimizer = minimizer or optimize.minimize
self.minimizer_args = minimizer_args or []
self.minimizer_kwargs = minimizer_kwargs or {
'method': 'Nelder-Mead',
'options': {
'disp': True,
'ftol': 1.0e-2,
'xtol': 1.0e-2
}
}
self.betas = init_betas or np.random.uniform(0, np.pi, self.steps)[::-1]
self.gammas = init_gammas or np.random.uniform(0, 2*np.pi, self.steps)
self.vqe_options = vqe_options or {}
self.ref_state_prep = (
driver_ref or
pq.Program([H(i) for i in self.qubits])
)
if store_basis:
self.states = [
np.binary_repr(i, width=len(self.qubits))
for i in range(self.nstates)
]
# Check argument types
if not isinstance(self.cost_ham, (list, tuple)):
raise TypeError("cost_ham must be a list of PauliSum objects.")
if not all([isinstance(x, PauliSum) for x in self.cost_ham]):
raise TypeError("cost_ham must be a list of PauliSum objects")
if not isinstance(self.ref_ham, (list, tuple)):
raise TypeError("ref_ham must be a list of PauliSum objects")
if not all([isinstance(x, PauliSum) for x in self.ref_ham]):
raise TypeError("ref_ham must be a list of PauliSum objects")
if not isinstance(self.ref_state_prep, pq.Program):
raise TypeError("Please provide a pyQuil Program object "
"to generate initial state.")
def get_parameterized_program(self):
"""
Return a function that accepts parameters and returns a new Quil
program.
:returns: a function
"""
cost_para_programs = []
driver_para_programs = []
for idx in range(self.steps):
cost_list = []
driver_list = []
for cost_pauli_sum in self.cost_ham:
for term in cost_pauli_sum.terms:
cost_list.append(exponential_map(term))
for driver_pauli_sum in self.ref_ham:
for term in driver_pauli_sum.terms:
driver_list.append(exponential_map(term))
cost_para_programs.append(cost_list)
driver_para_programs.append(driver_list)
def psi_ref(params):
"""
Construct a Quil program for the vector (beta, gamma).
:param params: array of 2 . p angles, betas first, then gammas
:return: a pyquil program object
"""
# print('Params',params)
if len(params) != 2*self.steps:
raise ValueError("params doesn't match the number of parameters set by `steps`")
betas = params[:self.steps]
gammas = params[self.steps:]
prog = pq.Program()
prog += self.ref_state_prep
for idx in range(self.steps):
for fprog in cost_para_programs[idx]:
prog += fprog(gammas[idx])
for fprog in driver_para_programs[idx]:
prog += fprog(betas[idx])
# print('Prog',prog)
# print(isinstance(prog, pq.Program))
return prog
return psi_ref
def get_angles(self):
"""
Finds optimal angles with the quantum variational eigensolver method.
Stored VQE result
:returns: ([list], [list]) A tuple of the beta angles and the gamma
angles for the optimal solution.
"""
stacked_params = np.hstack((self.betas, self.gammas))
vqe = VQE(self.minimizer, minimizer_args=self.minimizer_args,
minimizer_kwargs=self.minimizer_kwargs)
cost_ham = reduce(lambda x, y: x + y, self.cost_ham)
# maximizing the cost function!
param_prog = self.get_parameterized_program()
result = vqe.vqe_run(param_prog, cost_ham, stacked_params, qvm=self.qvm,
**self.vqe_options)
self.result = result
betas = result.x[:self.steps]
gammas = result.x[self.steps:]
return betas, gammas
def probabilities(self, angles):
"""
Computes the probability of each state given a particular set of angles.
:param angles: [list] A concatenated list of angles [betas]+[gammas]
:return: [list] The probabilities of each outcome given those angles.
"""
if isinstance(angles, list):
angles = np.array(angles)
assert angles.shape[0] == 2 * self.steps, "angles must be 2 * steps"
param_prog = self.get_parameterized_program()
prog = param_prog(angles)
wf = self.qvm.wavefunction(prog)
wf = wf.amplitudes.reshape((-1, 1))
probs = np.zeros_like(wf)
for xx in range(2 ** len(self.qubits)):
probs[xx] = np.conj(wf[xx]) * wf[xx]
return probs
def get_string(self, betas, gammas, samples=100):
"""
Compute the most probable string.
The method assumes you have passed init_betas and init_gammas with your
pre-computed angles or you have run the VQE loop to determine the
angles. If you have not done this you will be returning the output for
a random set of angles.
:param betas: List of beta angles
:param gammas: List of gamma angles
:param samples: (int, Optional) number of samples to get back from the
QVM.
:returns: tuple representing the bitstring, Counter object from
collections holding all output bitstrings and their frequency.
"""
if samples <= 0 and not isinstance(samples, int):
raise ValueError("samples variable must be positive integer")
param_prog = self.get_parameterized_program()
stacked_params = np.hstack((betas, gammas))
sampling_prog = param_prog(stacked_params)
# print('sampling_prog belongs to Program', isinstance(sampling_prog, pq.Program))
# bitstring_samples = self.qvm.run_and_measure(sampling_prog,
# self.qubits,
# trials=samples)
qc = self.qvm
bitstring_samples = _measure_bitstrings(qc, sampling_prog, self.qubits, samples)
bitstring_tuples = list(map(tuple, bitstring_samples))
# print('Bitstring tuples1', bitstring_tuples[0])
# print('Bitstring tuples2', bitstring_tuples[1])
# print('Length:', len(bitstring_tuples))
bitstring_tuples_arr = []
for x in bitstring_tuples:
for y in x:
bitstring_tuples_arr.append(str(y))
freq = Counter(bitstring_tuples_arr)
print('frequency:', freq.values())
most_frequent_bit_string = max(freq, key=lambda x: freq[x])
# print('Most frequent string:', most_frequent_bit_string)
return most_frequent_bit_string, freq