-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
Copy pathlettercount.py
444 lines (371 loc) · 17.3 KB
/
lettercount.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
"""
Code to support http://norvig.com/mayzner.html
Read files in the Google Books ngram format, and convert them to a simpler format.
The original format looks like this:
word \t year \t word_count \t book_count
word_POS \t year \t word_count \t book_count
for example,
accreted_VERB 1846 7 4
accreted_VERB 1847 1 1
accreted_VERB 1848 1 1
The function 'read_year_file' will convert a file of this form into a dict of
{WORD: count} pairs, where the WORD is uppercased, and the count is the total
over all years (you have the option to specify a starting year) and all
capitalizations. Then 'read_dict' and 'write_dict' convert between a dict and
an external file format that looks like this:
ACCRETED 9
"""
from __future__ import division
from __future__ import print_function
from collections import Counter, defaultdict
#### Read files in Books-Ngram format; convert to a dict
def read_year_file(filename, dic=None):
"""Read a file of 'word year word_count book_count' lines and convert to a dict
{WORD: totalcount}. Uppercase all words, and only include all-alphabetic words."""
if dic is None: dic = {}
for line in open(filename):
word, year, c1, c2 = line.split('\t')
if '_' in word:
word = word[:word.index('_')]
if word.isalpha():
word = word.upper()
dic[word] = dic.get(word, 0) + int(c1)
return dic
#### Read and write files of the form 'WORD \t count \n'
def write_dict(dic, filename):
"Write a {word:count} dict as 'word \t count' lines in filename."
out = open(filename, 'w')
for key in sorted(dic):
out.write('%s\t%s\n' % (key, dic[key]))
return out.close()
def read_dict(filename, sep='\t'):
"Read 'word \t count' lines from file and make them into a dict of {word:count}."
pairs = (line.split(sep) for line in open(filename))
return {word: int(count) for (word, count) in pairs}
#### Convert a bunch of year files into dict file format.
def convert_files(filenames, mincount=1e5):
def report(filename, D, adj):
import time
N = len(D)
W = sum(v for v in D.itervalues())
print('%s: %s %s words (%s tokens) at %s' % (
filename, adj, format(W, ',d'), format(N, ',d'),
time.strftime("%H:%M:%S", time.gmtime())))
for f in filenames:
report(f, {}, 'starting')
D = read_year_file(f)
report(f, D, 'total')
for key in list(D):
if D[key] < mincount:
del D[key]
write_dict(D, 'WORD-' + f[-1].upper())
report(f, D, 'popular')
def load(filename='top-words.txt'):
"Load file of 'word \t count' lines into D (a dict), W (length of D) and M (total number of words)."
global D, W, M
D = read_dict(filename)
W = len(D)
M = sum(D.values())
#### Compute letter counts and save as HTML files.
def histogram(items):
"Return a Counter of the number of times each key occurs in (key, val) pairs."
C = Counter()
for (key, val) in items:
C[key] += val
return C
def end(name): return '/' + name
def tag(name, **kwds): return '<' + name + keywords(kwds) + '>'
def row(cells, **kwds):
return '<tr>' + ''
def ngram_tables(dic, N, pos=[0, 1, 2, 3, 4, -5, -4, -3, -2, -1]):
"""Return three dicts of letter N-grams of length N: counts, counts1, counts2.
counts is a dict of {'AB': 123} that counts how often 'AB' occurs.
counts1[i] is a dict of {'AB': 123} that counts how often 'AB' occurs at position i.
counts2[i][j] is a dict of {'AB': 123} that counts how often 'AB' occurs at position i."""
L = len(max(D, key=len))
counts = Counter()
counts1 = [Counter() for _ in range(L)]
counts2 = [[Counter() for i in range(L)]]
def counter(pairs):
"Make a Counter from an iterable of (value, count) pairs."
c = Counter()
for (value, count) in pairs:
c[value] += count
return c
def ngrams(word, N):
return [word[i:i+N] for i in range(len(word)+1-N)]
import glob
#convert_files(glob.glob('book?'))
#DB = [[letter_counts() for length in range(length)] for length in range(maxlen)]
## Unused ???
def letter_counts(wc):
"""From word_counts dictionary wc, Create a dictionary of {(s, i, L): count}
where s is a letter n-gram, i is the starting position, and L is the length
of the word in which it appears."""
result = defaultdict(int)
for (word, count) in wc.iteritems():
for p in pieces(word):
result[p] += count
return result
def pieces(word):
"Yield the 1- and 2-letter grams in (s, i, L) format."
L = len(word)
for i in range(L):
yield (word[i], i, L)
if i+1 < L:
yield (word[i:i+2], i, L)
def getcount(counts, s, pos, length):
"""The count for letter sequence s (one or two letters) starting at
position i of words of length length. If any argument is all, sum them up."""
if length == all:
return sum(getcount(counts, s, pos, L) for L in all_lengths)
elif pos == all:
return sum(getcount(counts, s, i, length) for i in range(length))
else:
return counts[s, pos, length]
print('start')
#wc = word_counts('count_100K.txt')
#counts = letter_counts(wc)
print('end')
def test():
D = {'the': 100, 'of': 70, 'and': 60, 'to': 50, 'a': 40}
def num(ch):
"Translate 'a' or 'A' to 0, ... 'z' or 'Z' to 25."
return 'abcdefghijklmnopqrstuvwxyz'.index(ch.lower())
def stats(D, NS = (1, 2, 3, 4, 5, 6)):
counts = {n: Counter() for n in NS}
print('words ' + ' '.join(' %d-grams ' % n for n in NS))
for (i, word) in enumerate(sortedby(D), 1):
for n in NS:
for ng in ngrams(word, n):
counts[n][ng] += 1
if i % 5000 == 0 or i == len(D):
print("%4dK" % (i/1000), end=' ')
for n in NS:
c = len(counts[n])
field = "%5d (%d%%)" % (c, int(round(c*100/(26**n))))
print('%12s' % field, end=' ')
print()
letters = 'ETAOINSRHLDCUMFPGWYBVKXJQZ'
alphabet = ''.join(sorted(letters))
from itertools import cycle, izip
colors = 'ygobp'
def bar(text, color, count, N, pixels, height=16):
width = int(round(pixels * count / N))
if width < 2: width = 3
title = '{}: {:.3f}%; {:,}'.format(text, count*100./N, count)
return '<span title="%s"><img src="%s.jpg" height=%d width=%d><span style="position:relative; left:%d; bottom:4">%s</span></span>' % (
title, color, height, width, -width+2, text) # -int(width/2+5)
def letter_bar(LC, N=None, factor='', pixels=700):
if N is None: N = sum(LC.values())
#divisor = {'':1., 'K':1e3, 'M':1e6, 'B':1e9}[factor]
return ''.join(
bar(L.lower(), color, LC[L], N, pixels)
for (L, color) in izip(letters, cycle(colors)))
def singleton(x): return [x]
positions = [0, 1, 2, 3, 4, 5, 6, -7, -6, -5, -4, -3, -2, -1]
def substr(word, pos, length):
"""Return the substr of word of given length starting/ending at pos; or None."""
W = len(word)
if pos >= 0 and pos+length <= W:
return word[pos:pos+length]
elif pos < 0 and abs(pos)+length-1 <= W:
return word[W+pos+1-length:W+pos+1]
else:
return None
def lettercount(D, pos):
LC = histogram((substr(w, pos, 1), D[w]) for w in D)
del LC[None]
print(LC)
pos_name = (str(pos)+'+' if isinstance(pos, tuple) else
pos if pos < 0 else
pos+1)
return '\n<br>\n%-3s %s' % (pos_name, letter_bar(LC))
def ngramcount(D, n=2):
return histogram((ng, D[w]) for w in D for ng in ngrams(w, n))
def twograms(D2):
N = sum(D2.values())
header = '<table cellpadding=1 cellborder=1>'
rows = [tr([cell(A+B, D2, N) for A in alphabet]) for B in alphabet]
return '\n'.join([header] + rows + ['</table>'])
def cell(text, D2, N, height=16, maxwidth=25, scale=27):
count = D2.get(text, 0)
width = int(round(maxwidth * count * scale * 1. / N))
if width < 1: width = 1
title = '{}: {:.3f}%; {:,}'.format(text, count*100./N, count)
return '<td title="%s"><img src="o.jpg" height=%d width=%d><span style="position:relative; left:%d; bottom:4">%s</span></span>' % (
title, height, width, -width+2, text)
def cell(text, D2, N, height=16, maxwidth=25, scale=27):
count = D2.get(text, 0)
width = int(round(maxwidth * count * scale * 1. / N))
if width < 1: width = 1
title = '{}: {:.3f}%; {:,}'.format(text, count*100./N, count)
return '<td title="%s" background="o.jpg" height=%d width=%d>%s' % (
title, height, width, text)
def tr(cells):
return '<tr>' + ''.join(cells)
def comma(n): return '{:,}'.format(n)
def ngram_stats(D, n, k=5):
DN = ngramcount(D, n)
topk = ', '.join(sortedby(DN)[:k])
return '<tr><td>%d-grams<td align=right>%s<td align=right>%s<td><a href="counts-%d.csv">counts-%d.csv</a><td><a href="counts-%d.html">counts-%d.html</a><td>%s' % (
n, comma(len(DN)), comma(sum(DN.values())), n, n, n, n, topk)
#### Tables
def sortedby(D):
return sorted(D, key=lambda x: -D[x])
ANY = '*'
wordlengths = range(1, 10)
def col(*args): return args
def columns(n, wordlengths=wordlengths):
lengths = [k for k in wordlengths if k >= n]
return ([col(ANY, ANY)]
+ [col(k, ANY) for k in lengths]
+ [col(k, start, start+n-1) for k in lengths for start in range(1, 2+k-n)]
+ [col(ANY, start, start+n-1) for start in wordlengths]
+ [col(ANY, -k, -k+n-1) for k in reversed(lengths) if -k+n-1 < 0])
def colname(col):
fmt = '%s/%s' if (len(col) == 2) else '%s/%d:%d'
return fmt % col
def csvline(first, rest):
return '\t'.join([first] + map(str, rest))
def makecsv(n, D=D):
out = open('ngrams%d.csv' % n, 'w')
cols = columns(n)
Dng = defaultdict(lambda: defaultdict(int))
for w in D:
for (start, ng) in enumerate(ngrams(w, n), 1):
entry = Dng[ng]
N = D[w]
wlen = len(w)
entry[ANY, ANY] += N
entry[wlen, ANY] += N
if start <= 9:
entry[wlen, start, start+n-1] += N
entry[ANY, start, start+n-1] += N
from_end = wlen-start+1
if from_end <= 9:
entry[ANY, -from_end, -from_end+n-1] += N
# enumerate ngrams from word and increment counts for each one
print(csvline('%d-gram' % n, map(colname, cols)), file=out)
for ng in sorted(Dng, key=lambda ng: -Dng[ng][(ANY, ANY)]):
print(csvline(ng, [Dng[ng].get(col, 0) for col in cols]), file=out)
out.close()
return Dng
### Tests
"""
>>> for w in words:
print '%-6s %6.2f B (%4.2f%%) <img src="s.jpg" height=12 width=%d>' % (w.lower(), D[w]/1e9, D[w]*100./N, int(round(D[w]*4000./N)))
...
the 53.10 B (7.14%) <img src="s.jpg" height=12 width=286>
of 30.97 B (4.16%) <img src="s.jpg" height=12 width=167>
and 22.63 B (3.04%) <img src="s.jpg" height=12 width=122>
to 19.35 B (2.60%) <img src="s.jpg" height=12 width=104>
in 16.89 B (2.27%) <img src="s.jpg" height=12 width=91>
a 15.31 B (2.06%) <img src="s.jpg" height=12 width=82>
is 8.38 B (1.13%) <img src="s.jpg" height=12 width=45>
that 8.00 B (1.08%) <img src="s.jpg" height=12 width=43>
for 6.55 B (0.88%) <img src="s.jpg" height=12 width=35>
it 5.74 B (0.77%) <img src="s.jpg" height=12 width=31>
as 5.70 B (0.77%) <img src="s.jpg" height=12 width=31>
was 5.50 B (0.74%) <img src="s.jpg" height=12 width=30>
with 5.18 B (0.70%) <img src="s.jpg" height=12 width=28>
be 4.82 B (0.65%) <img src="s.jpg" height=12 width=26>
by 4.70 B (0.63%) <img src="s.jpg" height=12 width=25>
on 4.59 B (0.62%) <img src="s.jpg" height=12 width=25>
not 4.52 B (0.61%) <img src="s.jpg" height=12 width=24>
he 4.11 B (0.55%) <img src="s.jpg" height=12 width=22>
i 3.88 B (0.52%) <img src="s.jpg" height=12 width=21>
this 3.83 B (0.51%) <img src="s.jpg" height=12 width=21>
are 3.70 B (0.50%) <img src="s.jpg" height=12 width=20>
or 3.67 B (0.49%) <img src="s.jpg" height=12 width=20>
his 3.61 B (0.49%) <img src="s.jpg" height=12 width=19>
from 3.47 B (0.47%) <img src="s.jpg" height=12 width=19>
at 3.41 B (0.46%) <img src="s.jpg" height=12 width=18>
which 3.14 B (0.42%) <img src="s.jpg" height=12 width=17>
but 2.79 B (0.38%) <img src="s.jpg" height=12 width=15>
have 2.78 B (0.37%) <img src="s.jpg" height=12 width=15>
an 2.73 B (0.37%) <img src="s.jpg" height=12 width=15>
had 2.62 B (0.35%) <img src="s.jpg" height=12 width=14>
they 2.46 B (0.33%) <img src="s.jpg" height=12 width=13>
you 2.34 B (0.31%) <img src="s.jpg" height=12 width=13>
were 2.27 B (0.31%) <img src="s.jpg" height=12 width=12>
their 2.15 B (0.29%) <img src="s.jpg" height=12 width=12>
one 2.15 B (0.29%) <img src="s.jpg" height=12 width=12>
all 2.06 B (0.28%) <img src="s.jpg" height=12 width=11>
we 2.06 B (0.28%) <img src="s.jpg" height=12 width=11>
can 1.67 B (0.22%) <img src="s.jpg" height=12 width=9>
her 1.63 B (0.22%) <img src="s.jpg" height=12 width=9>
has 1.63 B (0.22%) <img src="s.jpg" height=12 width=9>
there 1.62 B (0.22%) <img src="s.jpg" height=12 width=9>
been 1.62 B (0.22%) <img src="s.jpg" height=12 width=9>
if 1.56 B (0.21%) <img src="s.jpg" height=12 width=8>
more 1.55 B (0.21%) <img src="s.jpg" height=12 width=8>
when 1.52 B (0.20%) <img src="s.jpg" height=12 width=8>
will 1.49 B (0.20%) <img src="s.jpg" height=12 width=8>
would 1.47 B (0.20%) <img src="s.jpg" height=12 width=8>
who 1.46 B (0.20%) <img src="s.jpg" height=12 width=8>
so 1.45 B (0.19%) <img src="s.jpg" height=12 width=8>
no 1.40 B (0.19%) <img src="s.jpg" height=12 width=8>
>>> for n in sorted(H):
print '%2d %9.2f M (%6.3f%%) <img src="s.jpg" height=12 width=%d> %d' % (n, H[n]/1e6, H[n]*100./NN, H[n]*3000./NN, n)
...
1 22301.22 M ( 2.998%) <img src="s.jpg" height=12 width=89> 1
2 131293.85 M (17.651%) <img src="s.jpg" height=12 width=529> 2
3 152568.38 M (20.511%) <img src="s.jpg" height=12 width=615> 3
4 109988.33 M (14.787%) <img src="s.jpg" height=12 width=443> 4
5 79589.32 M (10.700%) <img src="s.jpg" height=12 width=320> 5
6 62391.21 M ( 8.388%) <img src="s.jpg" height=12 width=251> 6
7 59052.66 M ( 7.939%) <img src="s.jpg" height=12 width=238> 7
8 44207.29 M ( 5.943%) <img src="s.jpg" height=12 width=178> 8
9 33006.93 M ( 4.437%) <img src="s.jpg" height=12 width=133> 9
10 22883.84 M ( 3.076%) <img src="s.jpg" height=12 width=92> 10
11 13098.06 M ( 1.761%) <img src="s.jpg" height=12 width=52> 11
12 7124.15 M ( 0.958%) <img src="s.jpg" height=12 width=28> 12
13 3850.58 M ( 0.518%) <img src="s.jpg" height=12 width=15> 13
14 1653.08 M ( 0.222%) <img src="s.jpg" height=12 width=6> 14
15 565.24 M ( 0.076%) <img src="s.jpg" height=12 width=2> 15
16 151.22 M ( 0.020%) <img src="s.jpg" height=12 width=0> 16
17 72.81 M ( 0.010%) <img src="s.jpg" height=12 width=0> 17
18 28.62 M ( 0.004%) <img src="s.jpg" height=12 width=0> 18
19 8.51 M ( 0.001%) <img src="s.jpg" height=12 width=0> 19
20 6.35 M ( 0.001%) <img src="s.jpg" height=12 width=0> 20
21 0.13 M ( 0.000%) <img src="s.jpg" height=12 width=0> 21
22 0.81 M ( 0.000%) <img src="s.jpg" height=12 width=0> 22
23 0.32 M ( 0.000%) <img src="s.jpg" height=12 width=0> 23
>>> NL = sum(LC.values())
>>> for L in sorted(LC, key=lambda L: -LC[L]):
print '%s %8.1f B (%5.2f%%) <img src="s.jpg" height=12 width=%d>' % (L, LC[L]/1e9, LC[L]*100./NL, LC[L]*3000./NL)
...
E 445.2 B (12.49%) <img src="s.jpg" height=12 width=374>
T 330.5 B ( 9.28%) <img src="s.jpg" height=12 width=278>
A 286.5 B ( 8.04%) <img src="s.jpg" height=12 width=241>
O 272.3 B ( 7.64%) <img src="s.jpg" height=12 width=229>
I 269.7 B ( 7.57%) <img src="s.jpg" height=12 width=227>
N 257.8 B ( 7.23%) <img src="s.jpg" height=12 width=217>
S 232.1 B ( 6.51%) <img src="s.jpg" height=12 width=195>
R 223.8 B ( 6.28%) <img src="s.jpg" height=12 width=188>
H 180.1 B ( 5.05%) <img src="s.jpg" height=12 width=151>
L 145.0 B ( 4.07%) <img src="s.jpg" height=12 width=122>
D 136.0 B ( 3.82%) <img src="s.jpg" height=12 width=114>
C 119.2 B ( 3.34%) <img src="s.jpg" height=12 width=100>
U 97.3 B ( 2.73%) <img src="s.jpg" height=12 width=81>
M 89.5 B ( 2.51%) <img src="s.jpg" height=12 width=75>
F 85.6 B ( 2.40%) <img src="s.jpg" height=12 width=72>
P 76.1 B ( 2.14%) <img src="s.jpg" height=12 width=64>
G 66.6 B ( 1.87%) <img src="s.jpg" height=12 width=56>
W 59.7 B ( 1.68%) <img src="s.jpg" height=12 width=50>
Y 59.3 B ( 1.66%) <img src="s.jpg" height=12 width=49>
B 52.9 B ( 1.48%) <img src="s.jpg" height=12 width=44>
V 37.5 B ( 1.05%) <img src="s.jpg" height=12 width=31>
K 19.3 B ( 0.54%) <img src="s.jpg" height=12 width=16>
X 8.4 B ( 0.23%) <img src="s.jpg" height=12 width=7>
J 5.7 B ( 0.16%) <img src="s.jpg" height=12 width=4>
Q 4.3 B ( 0.12%) <img src="s.jpg" height=12 width=3>
Z 3.2 B ( 0.09%) <img src="s.jpg" height=12 width=2>
>>> D2 = ngramcount(D, 2)
>>> for ng in sorted(D2, key=lambda L: -D2[L])[:50]: print '%s %8.1f B (%5.2f%%) <img src="o.jpg" height=12 width=%d>' % (ng, D2[ng]/1e9, D2[ng]*100./N2, D2[ng]*15000./N2)
def doit(k=25):
counts = [sortedby(ngramcount(D, n))[:k] for n in range(2, 10)]
for i in range(k):
print (' '.join(count[i] for count in counts)).lower()
"""