-
Notifications
You must be signed in to change notification settings - Fork 0
/
13_app_corrections.tex
115 lines (91 loc) · 5.31 KB
/
13_app_corrections.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
\section{Corrections for the mismatch between true and empirically derived $\pi_1$, effect size and power \label{App.corrections}}
We first introduce some notation in Table \ref{notation}:\\
\renewcommand{\arraystretch}{0.8}% Tighter
\begin{table}[H]
\begin{center}
\begin{tabular}{ll}
\toprule
$J$ & Total number of peaks \\
\midrule
${\cal J}_0^u$ & Indices of peaks arising in null regions above $u$ \\
${\cal J}_1^u$ & Indices of peaks arising in non-null regions above $u$ \\
$\tilde{\cal J}_0^u$ & Indices of peaks arising in empirically derived null regions above $u$ \\
$\tilde{\cal J}_1^u$ & Indices of peaks arising in empirically derived non-null regions above $u$ \\
& $J_0^u = |{\cal J}_0^u|$, $J_1^u = |{\cal J}_1^u|$\\
& $\tilde{J}_0^u = |\tilde{\cal J}_0^u|$, $\tilde{J}_1^u = |\tilde{\cal J}_1^u|$\\
\midrule
$\pi_{00}^u$ & Proportion of $\tilde{\cal J}_0^u$ that is truly null \\
$\pi_{10}^u$ & Proportion of $\tilde{\cal J}_1^u$ that is truly null \\
\bottomrule
\end{tabular}
\caption{Notation for correction of population level estimators of $\pi_0$ and $\mu_1$. \label{notation}}
\end{center}
\end{table}
\subsection{Correction of model estimates}
As our reference level is analysed with family-wise error rate (FWER) control, we expect $\pi_{10}^u$ to be negligable and we set it to 0. $\pi_{00}^u$ can be estimated using the Beta-Uniform Model by \citet{Pounds2003}. With these definitions, we can derive the number of peaks that are falsely classified in the FWER-analysis for the \textbf{Held-in pilot data} in table \ref{classFWE}:\\
\begin{table}[H]
\begin{center}
\begin{tabular}{l|cc|l}
\toprule
& Empirically derived & Empirically derived \\
& Null peaks & Active peaks \\
\midrule
True null peaks & $\pi_{00}^u\tilde{J}_0^u$ & $\pi_{10}^u\tilde{J}_1^u =0$& $J_0^u$ \\
True active peaks & $(1-\pi_{00}^u)\tilde{J}_0^u$ & $(1-\pi_{10}^u)\tilde{J}_1^u = \tilde{J}_1^u$ & $J_1^u$ \\
\midrule
& $\tilde{J}_0^u$ & $\tilde{J}_1^u$ & \\
\bottomrule
\end{tabular}
\caption{Classification table of peaks after FWE thresholding in the held-in pilot data (with thresholding at $u$). \label{classFWE}}
\end{center}
\end{table}
Thus, an uncontaminated estimate of $\pi_0$ can be found as:
\begin{equation}
\tilde{\pi}_0 = \frac{J_0^u}{J^u} = \frac{\hat\pi_{00}^u\tilde{J}_0^u}{J^u} \nonumber
\end{equation}
Similarly, bias-corrected versions of $\mu_1$ are possible. First we note
\begin{align}
E(Z^u | {\cal J}_0^u) &= u + 1/u \nonumber \\
E(Z^u | {\cal J}_1^u) &= \mu_1 \nonumber
\end{align}
where the conditional expectation indicates the set of peaks under consideration. Now, similar to table \ref{classFWE}, we can decompose the expectation over observable sets:
\begin{align}
E(Z^u|\tilde{\cal J}_0^u) &= \pi_{00}^u(u+1/u) + (1-\pi_{00}^u)E(Z^u | {\cal J}_1^u) \nonumber \\
E(Z^u|\tilde{\cal J}_1^u) &= E(Z^u | {\cal J}_1^u) \nonumber
\end{align}
Thus $\tilde\mu_1$ can be estimated:
\begin{equation}
\tilde\mu_1 = \frac{(1-\pi_{00}^u)\tilde{J}_0^u}{J_1^u}\hat E(Z^u | \tilde{J}_1^u) + \frac{\tilde{J}_1^u}{J^u_1}\frac{E(Z^u | \tilde{\cal J}_0^u)-\hat\pi_{00}^u(u+1/u)}{1-\hat\pi_{00}^u}
\end{equation}
\subsection{Correction of power estimates}
{\color{Cyan}For that for the power estimation procedure, we aim to estimate power without threshold $u$. Therefore, we use the same notation as in \ref{notation}, but drop the $u$ to represent the peak indices without applying a threshold. Similar to \ref{classFWE}, we can derive the number of peaks that are falsely classified in the FWER-analysis for the \textbf{Held-in study data} in table \ref{classFWEnothres}:\\
\begin{table}[H]
\begin{center}
\begin{tabular}{l|cc|l}
\toprule
& Empirically derived & Empirically derived \\
& Null peaks & Active peaks \\
\midrule
True null peaks & $\pi_{00}^u\tilde{J}_0$ & $0$& $J_0$ \\
True active peaks & $(1-\pi_{00})\tilde{J}_0$ & $\tilde{J}_1$ & $J_1$ \\
\midrule
& $\tilde{J}_0$ & $\tilde{J}_1$ & \\
\bottomrule
\end{tabular}
\caption{Classification table of peaks after FWE thresholding in the held-in study data (without thresholding). \label{classFWEnothres}}
\end{center}
\end{table}
We again estimate $\pi_00$, the proportion of active peaks among all empirically derived null peaks, $\tilde{J}_0$, using the Beta-Uniform Model. Using table \ref{classFWEnothres}, an uncontaminated estimate of $1-\beta_{z_\alpha}$ can be found as:
\begin{align}
(1-\tilde\beta_{z_\alpha}) &= \frac{|Z_j \geq z_\alpha|}{J_1}, \text{ for } j \in \tilde{\mathcal{J}_1} \nonumber \\
&= \frac{|Z_j \geq z_\alpha|}{\tilde{J}_1 + (1-\pi_{00})\tilde{J}_0}, \text{ for } j \in \tilde{\mathcal{J}_1} \nonumber
\end{align}
Note that we assume that there is no overlap between $Z_j, \text{ for } j \in \tilde{\mathcal{J}_0}$ and $J_1$, which makes our uncontaminated estimate conservative.}
% # how many false negatives?
% if not np.sum(peaks['active'])==len(peaks):
% nonactid = np.where(peaks['active']==0)[0]
% pi1 = effectsize.Pi1()
% pi1.pvalues = peaks['pvals'][nonactid]
% pi1.estimate(starts=10)
% NoFalseNegatives = pi1.pi1*len(nonactid)
%From the set up, one would assume you would set pi_0^A = 0.05 = alpha_FDR... are you instead saying you run P&M again? Can you justify that further and explain why you didn't just assume 5%?