-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
45 lines (33 loc) · 1.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import glob
import random
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from rastering import Rasterer
from rastering import RotoTranslation
from rastering import Vector
if __name__ == '__main__':
camera_pose = RotoTranslation(rotation=Vector(x=90., y=0., z=0.),
translation=Vector(x=0., y=-8., z=0.),
angle_unit='degrees')
print(camera_pose, '\n')
# Toy dataset containing 5 random car meshes from Shapenetcore.
mesh_dataset = [np.load(mesh_path) for mesh_path in glob.glob('data/*/*.npy')]
camera_intrinsics = {'resolution_px': (128, 128), 'resolution_mm': (32, 32), 'focal_len_mm': 35}
renderer = Rasterer(meshes=mesh_dataset,
pl_camera_pose=tf.placeholder(dtype=tf.float32, shape=(None, 4, 4)),
pl_model_idx=tf.placeholder(dtype=tf.int32, shape=(None,)),
max_triangles=3000, **camera_intrinsics)
# Sample a bunch of models from the mesh dataset. There will be rendered in the same batch.
n_meshes = 3
model_idxs = np.asarray(random.sample(range(len(mesh_dataset)), k=n_meshes))
# Load camera pose. In this case it is the same for all renderings.
camera_matrix = camera_pose.matrix
camera_matrices = np.tile(camera_matrix[None, ...], [n_meshes, 1, 1])
with tf.Session() as tf_session:
tf_session.run(tf.variables_initializer(tf.global_variables()))
render_output = tf_session.run(renderer.image, feed_dict={renderer.pl_model_idx: model_idxs,
renderer.pl_camera_pose: camera_matrices})
for b in range(n_meshes):
plt.imshow(render_output[b])
plt.waitforbuttonpress()