Skip to content

Latest commit

 

History

History
185 lines (128 loc) · 3.38 KB

YOLOv8.md

File metadata and controls

185 lines (128 loc) · 3.38 KB

YOLOv8 usage

NOTE: The yaml file is not required.

Convert model

1. Download the YOLOv8 repo and install the requirements

git clone https://github.com/ultralytics/ultralytics.git
cd ultralytics
pip3 install -e .
pip3 install onnx onnxslim onnxruntime

NOTE: It is recommended to use Python virtualenv.

2. Copy conversor

Copy the export_yoloV8.py file from DeepStream-Yolo/utils directory to the ultralytics folder.

3. Download the model

Download the pt file from YOLOv8 releases (example for YOLOv8s)

wget https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt

NOTE: You can use your custom model.

4. Convert model

Generate the ONNX model file (example for YOLOv8s)

python3 export_yoloV8.py -w yolov8s.pt --dynamic

NOTE: To change the inference size (defaut: 640)

-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH

Example for 1280

-s 1280

or

-s 1280 1280

NOTE: To simplify the ONNX model (DeepStream >= 6.0)

--simplify

NOTE: To use dynamic batch-size (DeepStream >= 6.1)

--dynamic

NOTE: To use static batch-size (example for batch-size = 4)

--batch 4

NOTE: If you are using the DeepStream 5.1, remove the --dynamic arg and use opset 12 or lower. The default opset is 17.

--opset 12

5. Copy generated files

Copy the generated ONNX model file and labels.txt file (if generated) to the DeepStream-Yolo folder.

Compile the lib

  1. Open the DeepStream-Yolo folder and compile the lib

  2. Set the CUDA_VER according to your DeepStream version

export CUDA_VER=XY.Z
  • x86 platform

    DeepStream 7.1 = 12.6
    DeepStream 7.0 / 6.4 = 12.2
    DeepStream 6.3 = 12.1
    DeepStream 6.2 = 11.8
    DeepStream 6.1.1 = 11.7
    DeepStream 6.1 = 11.6
    DeepStream 6.0.1 / 6.0 = 11.4
    DeepStream 5.1 = 11.1
    
  • Jetson platform

    DeepStream 7.1 = 12.6
    DeepStream 7.0 / 6.4 = 12.2
    DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4
    DeepStream 6.0.1 / 6.0 / 5.1 = 10.2
    
  1. Make the lib
make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo

Edit the config_infer_primary_yoloV8 file

Edit the config_infer_primary_yoloV8.txt file according to your model (example for YOLOv8s with 80 classes)

[property]
...
onnx-file=yolov8s.pt.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...

NOTE: The YOLOv8 resizes the input with center padding. To get better accuracy, use

[property]
...
maintain-aspect-ratio=1
symmetric-padding=1
...

Edit the deepstream_app_config file

...
[primary-gie]
...
config-file=config_infer_primary_yoloV8.txt

Testing the model

deepstream-app -c deepstream_app_config.txt

NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).

NOTE: For more information about custom models configuration (batch-size, network-mode, etc), please check the docs/customModels.md file.