-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathShort_Theory_13_15.thy
263 lines (233 loc) · 9.11 KB
/
Short_Theory_13_15.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
theory Short_Theory_13_15
imports "HOL-IMP.Abs_Int1"
begin
datatype sign' = Neg | Zero | Pos
type_synonym sign = "sign' set"
lemma sign_ext: "UNIV = {Neg, Zero, Pos}"
proof auto
fix x
show "\<lbrakk>x \<noteq> Neg; x \<noteq> Zero\<rbrakk> \<Longrightarrow> x = Pos"
proof (cases x, auto)
qed
qed
lemma card_sign' [simp]: "card (UNIV :: sign) = 3" by (auto simp: sign_ext)
lemma finite_sign' [simp, intro!]: "finite (UNIV :: sign' set)" by (auto simp: sign_ext)
lemma finite_sign [simp, intro!]: "finite (UNIV :: sign set)" by (simp add: Finite_Set.finite_set)
text\<open>Instantiation of class \<^class>\<open>order\<close> with type \<^typ>\<open>sign\<close>:\<close>
text\<open>Instantiation of class \<^class>\<open>semilattice_sup_top\<close> with type \<^typ>\<open>sign\<close>:\<close>
instantiation set :: (type) semilattice_sup_top
begin
instance ..
end
text\<open>Now we define the functions used for instantiating the abstract
interpretation locales. Note that the Isabelle terminology is
\emph{interpretation}, not \emph{instantiation} of locales, but we use
instantiation to avoid confusion with abstract interpretation.\<close>
fun \<gamma>_sign' :: "sign' \<Rightarrow> val set" where
"\<gamma>_sign' Neg = {i. i < 0}" |
"\<gamma>_sign' Zero = {0}" |
"\<gamma>_sign' Pos = {i. 0 < i}"
fun \<gamma>_sign :: "sign \<Rightarrow> val set" where
"\<gamma>_sign S = {i. \<exists>s\<in>S. i \<in> \<gamma>_sign' s}"
fun num_sign :: "val \<Rightarrow> sign" where
"num_sign i = (if i < 0 then {Neg} else if 0 < i then {Pos} else {Zero})"
fun plus_sign' :: "sign' \<Rightarrow> sign' \<Rightarrow> sign" where
"plus_sign' Neg Pos = UNIV" |
"plus_sign' Pos Neg = UNIV" |
"plus_sign' Zero s = {s}" |
"plus_sign' s _ = {s}"
fun plus_sign :: "sign \<Rightarrow> sign \<Rightarrow> sign" where
"plus_sign S1 S2 = {s. \<exists>s1\<in>S1. \<exists>s2\<in>S2. s \<in> plus_sign' s1 s2}"
text\<open>First we instantiate the abstract value interface and prove that the
functions on type \<^typ>\<open>sign\<close> have all the necessary properties:\<close>
lemma val_tricho_0:
fixes x :: val
obtains (BNeg) "x < 0" | (BZero) "x = 0" | (BPos) "x > 0"
by (rule linorder_cases)
lemma \<gamma>_sign_top [simp]: "\<gamma>_sign UNIV = UNIV"
proof auto
fix x :: val
show "\<exists>s. x \<in> \<gamma>_sign' s"
proof (cases rule: val_tricho_0 [of x])
case BNeg
then have "x \<in> \<gamma>_sign' Neg" by auto
then show ?thesis by blast
next
case BZero
then have "x \<in> \<gamma>_sign' Zero" by auto
then show ?thesis by blast
next
case BPos
then have "x \<in> \<gamma>_sign' Pos" by auto
then show ?thesis by blast
qed
qed
lemma Neg_\<gamma>_sign [dest]: "\<lbrakk>x < 0; x \<in> \<gamma>_sign S\<rbrakk> \<Longrightarrow> Neg \<in> S"
proof auto
fix s
assume assm: "s \<in> S" "x < 0" "x \<in> \<gamma>_sign' s"
from assm(2, 3) have "s = Neg" by (cases s) auto
with assm(1) show "Neg \<in> S" by simp
qed
lemma Zero_\<gamma>_sign [dest]: "\<lbrakk>x = 0; x \<in> \<gamma>_sign S\<rbrakk> \<Longrightarrow> Zero \<in> S"
proof auto
fix s
assume assm: "s \<in> S" "0 \<in> \<gamma>_sign' s"
from assm(2) have "s = Zero" by (cases s) auto
with assm(1) show "Zero \<in> S" by simp
qed
lemma Pos_\<gamma>_sign [dest]: "\<lbrakk>0 < x; x \<in> \<gamma>_sign S\<rbrakk> \<Longrightarrow> Pos \<in> S"
proof auto
fix s
assume assm: "s \<in> S" "0 < x" "x \<in> \<gamma>_sign' s"
from assm(2, 3) have "s = Pos" by (cases s) auto
with assm(1) show "Pos \<in> S" by simp
qed
global_interpretation Val_semilattice
where \<gamma> = \<gamma>_sign and num' = num_sign and plus' = plus_sign
proof (standard, goal_cases)
case (1 a b)
then show ?case by auto
next
case 2
then show ?case
proof auto
fix x :: val
show "\<exists>s. x \<in> \<gamma>_sign' s"
proof (cases rule: val_tricho_0 [of x])
case BNeg
then have "x \<in> \<gamma>_sign' Neg" by auto
then show ?thesis by blast
next
case BZero
then have "x \<in> \<gamma>_sign' Zero" by auto
then show ?thesis by blast
next
case BPos
then have "x \<in> \<gamma>_sign' Pos" by auto
then show ?thesis by blast
qed
qed
next
case (3 i)
then show ?case by auto
next
case (4 i1 a1 i2 a2)
show ?case
proof (cases rule: val_tricho_0 [of i1];
cases rule: val_tricho_0 [of i2];
cases rule: val_tricho_0 [of "i1 + i2"];
linarith?)
{
assume "i1 < 0"
with 4(1) have H1: "Neg \<in> a1" by (simp add: Neg_\<gamma>_sign)
{
assume "i2 < 0"
with 4(2) have H2: "Neg \<in> a2" by (simp add: Neg_\<gamma>_sign)
from H1 H2 have "Neg \<in> plus_sign a1 a2" by force
moreover assume "i1 + i2 < 0"
ultimately show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" by fastforce
}
{
assume "i2 = 0"
with 4(2) have H2: "Zero \<in> a2" by (simp add: Zero_\<gamma>_sign)
from H1 H2 have "Neg \<in> plus_sign a1 a2" by force
moreover assume "i1 + i2 < 0"
ultimately show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" by fastforce
}
{
assume "i2 > 0"
with 4(2) have H2: "Pos \<in> a2" by (simp add: Pos_\<gamma>_sign)
from H1 H2 have "plus_sign a1 a2 = UNIV" by force
then have "\<gamma>_sign (plus_sign a1 a2) = UNIV" using \<gamma>_sign_top by auto
then show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" by auto
then show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" .
then show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" .
}
}
{
assume "i1 = 0"
with 4(1) have H1: "Zero \<in> a1" by (simp add: Zero_\<gamma>_sign)
{
assume "i2 < 0"
with 4(2) have H2: "Neg \<in> a2" by (simp add: Neg_\<gamma>_sign)
from H1 H2 have "Neg \<in> plus_sign a1 a2" by force
moreover assume "i1 + i2 < 0"
ultimately show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" by fastforce
}
{
assume "i2 = 0"
with 4(2) have H2: "Zero \<in> a2" by (simp add: Zero_\<gamma>_sign)
from H1 H2 have "Zero \<in> plus_sign a1 a2" by force
moreover assume "i1 + i2 = 0"
ultimately show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" by fastforce
}
{
assume "i2 > 0"
with 4(2) have H2: "Pos \<in> a2" by (simp add: Pos_\<gamma>_sign)
from H1 H2 have "Pos \<in> plus_sign a1 a2" by force
moreover assume "0 < i1 + i2"
ultimately show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" by fastforce
}
}
{
assume "0 < i1"
with 4(1) have H1: "Pos \<in> a1" by (simp add: Pos_\<gamma>_sign)
{
assume "i2 < 0"
with 4(2) have H2: "Neg \<in> a2" by (simp add: Neg_\<gamma>_sign)
from H1 H2 have "plus_sign a1 a2 = UNIV" by force
then have "\<gamma>_sign (plus_sign a1 a2) = UNIV" using \<gamma>_sign_top by auto
then show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" by auto
then show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" .
then show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" .
}
{
assume "i2 = 0"
with 4(2) have H2: "Zero \<in> a2" by (simp add: Zero_\<gamma>_sign)
from H1 H2 have "Pos \<in> plus_sign a1 a2" by force
moreover assume "0 < i1 + i2"
ultimately show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" by fastforce
}
{
assume "0 < i2"
with 4(2) have H2: "Pos \<in> a2" by (simp add: Pos_\<gamma>_sign)
from H1 H2 have "Pos \<in> plus_sign a1 a2" by force
moreover assume "0 < i1 + i2"
ultimately show "i1 + i2 \<in> \<gamma>_sign (plus_sign a1 a2)" by fastforce
}
}
qed
qed
text\<open>In case 4 we needed to refer to particular variables.
Writing (i x y z) fixes the names of the variables in case i to be x, y and z
in the left-to-right order in which the variables occur in the subgoal.
Underscores are anonymous placeholders for variable names we don't care to fix.\<close>
text\<open>Instantiating the abstract interpretation locale requires no more
proofs (they happened in the instatiation above) but delivers the
instantiated abstract interpreter which we call \<open>AI_parity\<close>:\<close>
global_interpretation Abs_Int
where \<gamma> = \<gamma>_sign and num' = num_sign and plus' = plus_sign
defines aval_sign = aval' and step_sign = step' and AI_sign = AI
..
global_interpretation Abs_Int_mono
where \<gamma> = \<gamma>_sign and num' = num_sign and plus' = plus_sign
proof (standard, goal_cases)
case (1 a1 b1 a2 b2) thus ?case
by(induct b1 b2 rule: plus_sign.induct) auto
qed
definition m_sign :: "sign \<Rightarrow> nat" where
"m_sign x = 3 - card x"
global_interpretation Abs_Int_measure
where \<gamma> = \<gamma>_sign and num' = num_sign and plus' = plus_sign
and m = m_sign and h = "3"
proof (standard, goal_cases)
case (1 x) thus ?case by(auto simp add: m_sign_def)
next
case (2 x y)
have "y \<subseteq> UNIV" by auto
then show ?case unfolding m_sign_def
by (metis "2" card_sign' diff_less_mono2 finite_sign' finite_subset less_le_trans psubset_card_mono)
qed
thm AI_Some_measure
end