-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathxor_wasm.ts
94 lines (81 loc) · 2.15 KB
/
xor_wasm.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/**
* This example shows how to train a neural network to predict the output of the XOR function.
*/
import {
Cost,
DenseLayer,
Sequential,
setupBackend,
SigmoidLayer,
tensor2D,
WASM,
} from "../packages/core/mod.ts";
/**
* Setup the WASM backend. This backend is slower than the CPU backend but works on the Edge.
*/
await setupBackend(WASM);
/**
* Creates a sequential neural network.
*/
const net = new Sequential({
/**
* The number of minibatches is set to 4 and the output size is set to 2.
*/
size: [4, 2],
/**
* The silent option is set to true, which means that the network will not output any logs during trainin
*/
silent: true,
/**
* Defines the layers of a neural network in the XOR function example.
* The neural network has two input neurons and one output neuron.
* The layers are defined as follows:
* - A dense layer with 3 neurons.
* - sigmoid activation layer.
* - A dense layer with 1 neuron.
* -A sigmoid activation layer.
*/
layers: [
DenseLayer({ size: [3] }),
SigmoidLayer(),
DenseLayer({ size: [1] }),
SigmoidLayer(),
],
/**
* The cost function used for training the network is the mean squared error (MSE).
*/
cost: Cost.MSE,
});
const time = performance.now();
/**
* Train the network on the given data.
*/
net.train(
[
{
inputs: tensor2D([
[0, 0],
[1, 0],
[0, 1],
[1, 1],
]),
outputs: tensor2D([[0], [1], [1], [0]]),
},
],
/**
* The number of iterations is set to 10000.
*/
10000,
);
console.log(`training time: ${performance.now() - time}ms`);
/**
* Predict the output of the XOR function for the given inputs.
*/
const out1 = (await net.predict(tensor2D([[0, 0]]))).data;
console.log(`0 xor 0 = ${out1[0]} (should be close to 0)`);
const out2 = (await net.predict(tensor2D([[1, 0]]))).data;
console.log(`1 xor 0 = ${out2[0]} (should be close to 1)`);
const out3 = (await net.predict(tensor2D([[0, 1]]))).data;
console.log(`0 xor 1 = ${out3[0]} (should be close to 1)`);
const out4 = (await net.predict(tensor2D([[1, 1]]))).data;
console.log(`1 xor 1 = ${out4[0]} (should be close to 0)`);