-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem18.py
76 lines (71 loc) · 2.51 KB
/
problem18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
## opens the text file that contains the triangle of integers (separated by spaces)
## returns a matrix representation of it
def buildMatrix(filename):
f = open(filename)
numbers = f.readlines()
f.close()
for j in range(0, len(numbers)):
numbers[j] = numbers[j].split()
for i in range(0, len(numbers[j])):
numbers[j][i] = int(numbers[j][i])
return numbers
matrix = buildMatrix("p18triangle.txt")
#matrix = buildMatrix("p067_triangle.txt")
#print(matrix)
#print(matrix)
#matrix = buildMatrix("newgrid.txt")
##def findMaxSum(mtx):
## maxsum = 0
## for j in range(0, len(mtx)): #iterate through the indices of the last row
## sum = mtx[len(mtx)-1][j]
## prevind = j
## for i in range(len(mtx)-1, 0, -1): #iterate backwards through the rows
## if(prevind == 0): #the previous chosen value is the first in a row
## sum+=mtx[i][0]
## elif (prevind == i+1): #the previous chosen value is the last in a row
## sum+=mtx[i][i]
## prevind = i
## else:
## left = mtx[i][prevind-1]
## right = mtx[i][prevind]
## if (left > right):
## sum+=left
## prevind -=1
## elif (right > left):
## sum+=right
## else: #the case where we have to recurse to find the best choice
##
## maxsum = max(maxsum, sum)
##def findMaxSum(row, col):
## val = matrix[row][col]
## #print(str(row) + "," + str(col)+","+str(val))
## if(row == 0):
## return val
## else:
## if(col == 0):
## return val + findMaxSum(row-1, col)
## elif (col == row):
## return val + findMaxSum(row-1, row-1)
## else:
#### left = matrix[row-1][col-1]
#### right = matrix[row-1][col]
#### if (left > right):
#### return val + findMaxSum(row-1, col-1)
#### elif (right > left):
#### return val + findMaxSum(row-1, col)
#### else:
## return val + max(findMaxSum(row-1, col-1), findMaxSum(row-1, col))
##
def findMaxSum(row, col):
val = matrix[row][col]
if (row == len(matrix)-1):
return val
else:
return val + max(findMaxSum(row+1,col), findMaxSum(row+1,col+1))
print(findMaxSum(0,0))
##maxi = 0
##for j in range(0,len(matrix)):
## sum = findMaxSum(len(matrix)-1, j)
## if(sum > maxi):
## maxi = sum
##print(maxi)