-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathbech32.cpp
569 lines (505 loc) · 26 KB
/
bech32.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
// Copyright (c) 2017, 2021 Pieter Wuille
// Copyright (c) 2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <bech32.h>
#include <util/vector.h>
#include <array>
#include <assert.h>
#include <numeric>
#include <optional>
namespace bech32
{
namespace
{
typedef std::vector<uint8_t> data;
/** The Bech32 and Bech32m character set for encoding. */
const char* CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l";
/** The Bech32 and Bech32m character set for decoding. */
const int8_t CHARSET_REV[128] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
15, -1, 10, 17, 21, 20, 26, 30, 7, 5, -1, -1, -1, -1, -1, -1,
-1, 29, -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1,
1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1,
-1, 29, -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1,
1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1
};
/** We work with the finite field GF(1024) defined as a degree 2 extension of the base field GF(32)
* The defining polynomial of the extension is x^2 + 9x + 23.
* Let (e) be a root of this defining polynomial. Then (e) is a primitive element of GF(1024),
* that is, a generator of the field. Every non-zero element of the field can then be represented
* as (e)^k for some power k.
* The array GF1024_EXP contains all these powers of (e) - GF1024_EXP[k] = (e)^k in GF(1024).
* Conversely, GF1024_LOG contains the discrete logarithms of these powers, so
* GF1024_LOG[GF1024_EXP[k]] == k.
* The following function generates the two tables GF1024_EXP and GF1024_LOG as constexprs. */
constexpr std::pair<std::array<int16_t, 1023>, std::array<int16_t, 1024>> GenerateGFTables()
{
// Build table for GF(32).
// We use these tables to perform arithmetic in GF(32) below, when constructing the
// tables for GF(1024).
std::array<int8_t, 31> GF32_EXP{};
std::array<int8_t, 32> GF32_LOG{};
// fmod encodes the defining polynomial of GF(32) over GF(2), x^5 + x^3 + 1.
// Because coefficients in GF(2) are binary digits, the coefficients are packed as 101001.
const int fmod = 41;
// Elements of GF(32) are encoded as vectors of length 5 over GF(2), that is,
// 5 binary digits. Each element (b_4, b_3, b_2, b_1, b_0) encodes a polynomial
// b_4*x^4 + b_3*x^3 + b_2*x^2 + b_1*x^1 + b_0 (modulo fmod).
// For example, 00001 = 1 is the multiplicative identity.
GF32_EXP[0] = 1;
GF32_LOG[0] = -1;
GF32_LOG[1] = 0;
int v = 1;
for (int i = 1; i < 31; ++i) {
// Multiplication by x is the same as shifting left by 1, as
// every coefficient of the polynomial is moved up one place.
v = v << 1;
// If the polynomial now has an x^5 term, we subtract fmod from it
// to remain working modulo fmod. Subtraction is the same as XOR in characteristic
// 2 fields.
if (v & 32) v ^= fmod;
GF32_EXP[i] = v;
GF32_LOG[v] = i;
}
// Build table for GF(1024)
std::array<int16_t, 1023> GF1024_EXP{};
std::array<int16_t, 1024> GF1024_LOG{};
GF1024_EXP[0] = 1;
GF1024_LOG[0] = -1;
GF1024_LOG[1] = 0;
// Each element v of GF(1024) is encoded as a 10 bit integer in the following way:
// v = v1 || v0 where v0, v1 are 5-bit integers (elements of GF(32)).
// The element (e) is encoded as 1 || 0, to represent 1*(e) + 0. Every other element
// a*(e) + b is represented as a || b (a and b are both GF(32) elements). Given (v),
// we compute (e)*(v) by multiplying in the following way:
//
// v0' = 23*v1
// v1' = 9*v1 + v0
// e*v = v1' || v0'
//
// Where 23, 9 are GF(32) elements encoded as described above. Multiplication in GF(32)
// is done using the log/exp tables:
// e^x * e^y = e^(x + y) so a * b = EXP[ LOG[a] + LOG [b] ]
// for non-zero a and b.
v = 1;
for (int i = 1; i < 1023; ++i) {
int v0 = v & 31;
int v1 = v >> 5;
int v0n = v1 ? GF32_EXP.at((GF32_LOG.at(v1) + GF32_LOG.at(23)) % 31) : 0;
int v1n = (v1 ? GF32_EXP.at((GF32_LOG.at(v1) + GF32_LOG.at(9)) % 31) : 0) ^ v0;
v = v1n << 5 | v0n;
GF1024_EXP[i] = v;
GF1024_LOG[v] = i;
}
return std::make_pair(GF1024_EXP, GF1024_LOG);
}
constexpr auto tables = GenerateGFTables();
constexpr const std::array<int16_t, 1023>& GF1024_EXP = tables.first;
constexpr const std::array<int16_t, 1024>& GF1024_LOG = tables.second;
/* Determine the final constant to use for the specified encoding. */
uint32_t EncodingConstant(Encoding encoding) {
assert(encoding == Encoding::BECH32 || encoding == Encoding::BECH32M);
return encoding == Encoding::BECH32 ? 1 : 0x2bc830a3;
}
/** This function will compute what 6 5-bit values to XOR into the last 6 input values, in order to
* make the checksum 0. These 6 values are packed together in a single 30-bit integer. The higher
* bits correspond to earlier values. */
uint32_t PolyMod(const data& v)
{
// The input is interpreted as a list of coefficients of a polynomial over F = GF(32), with an
// implicit 1 in front. If the input is [v0,v1,v2,v3,v4], that polynomial is v(x) =
// 1*x^5 + v0*x^4 + v1*x^3 + v2*x^2 + v3*x + v4. The implicit 1 guarantees that
// [v0,v1,v2,...] has a distinct checksum from [0,v0,v1,v2,...].
// The output is a 30-bit integer whose 5-bit groups are the coefficients of the remainder of
// v(x) mod g(x), where g(x) is the Bech32 generator,
// x^6 + {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}. g(x) is chosen in such a way
// that the resulting code is a BCH code, guaranteeing detection of up to 3 errors within a
// window of 1023 characters. Among the various possible BCH codes, one was selected to in
// fact guarantee detection of up to 4 errors within a window of 89 characters.
// Note that the coefficients are elements of GF(32), here represented as decimal numbers
// between {}. In this finite field, addition is just XOR of the corresponding numbers. For
// example, {27} + {13} = {27 ^ 13} = {22}. Multiplication is more complicated, and requires
// treating the bits of values themselves as coefficients of a polynomial over a smaller field,
// GF(2), and multiplying those polynomials mod a^5 + a^3 + 1. For example, {5} * {26} =
// (a^2 + 1) * (a^4 + a^3 + a) = (a^4 + a^3 + a) * a^2 + (a^4 + a^3 + a) = a^6 + a^5 + a^4 + a
// = a^3 + 1 (mod a^5 + a^3 + 1) = {9}.
// During the course of the loop below, `c` contains the bitpacked coefficients of the
// polynomial constructed from just the values of v that were processed so far, mod g(x). In
// the above example, `c` initially corresponds to 1 mod g(x), and after processing 2 inputs of
// v, it corresponds to x^2 + v0*x + v1 mod g(x). As 1 mod g(x) = 1, that is the starting value
// for `c`.
// The following Sage code constructs the generator used:
//
// B = GF(2) # Binary field
// BP.<b> = B[] # Polynomials over the binary field
// F_mod = b**5 + b**3 + 1
// F.<f> = GF(32, modulus=F_mod, repr='int') # GF(32) definition
// FP.<x> = F[] # Polynomials over GF(32)
// E_mod = x**2 + F.fetch_int(9)*x + F.fetch_int(23)
// E.<e> = F.extension(E_mod) # GF(1024) extension field definition
// for p in divisors(E.order() - 1): # Verify e has order 1023.
// assert((e**p == 1) == (p % 1023 == 0))
// G = lcm([(e**i).minpoly() for i in range(997,1000)])
// print(G) # Print out the generator
//
// It demonstrates that g(x) is the least common multiple of the minimal polynomials
// of 3 consecutive powers (997,998,999) of a primitive element (e) of GF(1024).
// That guarantees it is, in fact, the generator of a primitive BCH code with cycle
// length 1023 and distance 4. See https://en.wikipedia.org/wiki/BCH_code for more details.
uint32_t c = 1;
for (const auto v_i : v) {
// We want to update `c` to correspond to a polynomial with one extra term. If the initial
// value of `c` consists of the coefficients of c(x) = f(x) mod g(x), we modify it to
// correspond to c'(x) = (f(x) * x + v_i) mod g(x), where v_i is the next input to
// process. Simplifying:
// c'(x) = (f(x) * x + v_i) mod g(x)
// ((f(x) mod g(x)) * x + v_i) mod g(x)
// (c(x) * x + v_i) mod g(x)
// If c(x) = c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5, we want to compute
// c'(x) = (c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5) * x + v_i mod g(x)
// = c0*x^6 + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i mod g(x)
// = c0*(x^6 mod g(x)) + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i
// If we call (x^6 mod g(x)) = k(x), this can be written as
// c'(x) = (c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i) + c0*k(x)
// First, determine the value of c0:
uint8_t c0 = c >> 25;
// Then compute c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i:
c = ((c & 0x1ffffff) << 5) ^ v_i;
// Finally, for each set bit n in c0, conditionally add {2^n}k(x). These constants can be
// computed using the following Sage code (continuing the code above):
//
// for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(g(x) mod x^6), packed in hex integers.
// v = 0
// for coef in reversed((F.fetch_int(i)*(G % x**6)).coefficients(sparse=True)):
// v = v*32 + coef.integer_representation()
// print("0x%x" % v)
//
if (c0 & 1) c ^= 0x3b6a57b2; // k(x) = {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}
if (c0 & 2) c ^= 0x26508e6d; // {2}k(x) = {19}x^5 + {5}x^4 + x^3 + {3}x^2 + {19}x + {13}
if (c0 & 4) c ^= 0x1ea119fa; // {4}k(x) = {15}x^5 + {10}x^4 + {2}x^3 + {6}x^2 + {15}x + {26}
if (c0 & 8) c ^= 0x3d4233dd; // {8}k(x) = {30}x^5 + {20}x^4 + {4}x^3 + {12}x^2 + {30}x + {29}
if (c0 & 16) c ^= 0x2a1462b3; // {16}k(x) = {21}x^5 + x^4 + {8}x^3 + {24}x^2 + {21}x + {19}
}
return c;
}
/** Syndrome computes the values s_j = R(e^j) for j in [997, 998, 999]. As described above, the
* generator polynomial G is the LCM of the minimal polynomials of (e)^997, (e)^998, and (e)^999.
*
* Consider a codeword with errors, of the form R(x) = C(x) + E(x). The residue is the bit-packed
* result of computing R(x) mod G(X), where G is the generator of the code. Because C(x) is a valid
* codeword, it is a multiple of G(X), so the residue is in fact just E(x) mod G(x). Note that all
* of the (e)^j are roots of G(x) by definition, so R((e)^j) = E((e)^j).
*
* Let R(x) = r1*x^5 + r2*x^4 + r3*x^3 + r4*x^2 + r5*x + r6
*
* To compute R((e)^j), we are really computing:
* r1*(e)^(j*5) + r2*(e)^(j*4) + r3*(e)^(j*3) + r4*(e)^(j*2) + r5*(e)^j + r6
*
* Now note that all of the (e)^(j*i) for i in [5..0] are constants and can be precomputed.
* But even more than that, we can consider each coefficient as a bit-string.
* For example, take r5 = (b_5, b_4, b_3, b_2, b_1) written out as 5 bits. Then:
* r5*(e)^j = b_1*(e)^j + b_2*(2*(e)^j) + b_3*(4*(e)^j) + b_4*(8*(e)^j) + b_5*(16*(e)^j)
* where all the (2^i*(e)^j) are constants and can be precomputed.
*
* Then we just add each of these corresponding constants to our final value based on the
* bit values b_i. This is exactly what is done in the Syndrome function below.
*/
constexpr std::array<uint32_t, 25> GenerateSyndromeConstants() {
std::array<uint32_t, 25> SYNDROME_CONSTS{};
for (int k = 1; k < 6; ++k) {
for (int shift = 0; shift < 5; ++shift) {
int16_t b = GF1024_LOG.at(1 << shift);
int16_t c0 = GF1024_EXP.at((997*k + b) % 1023);
int16_t c1 = GF1024_EXP.at((998*k + b) % 1023);
int16_t c2 = GF1024_EXP.at((999*k + b) % 1023);
uint32_t c = c2 << 20 | c1 << 10 | c0;
int ind = 5*(k-1) + shift;
SYNDROME_CONSTS[ind] = c;
}
}
return SYNDROME_CONSTS;
}
constexpr std::array<uint32_t, 25> SYNDROME_CONSTS = GenerateSyndromeConstants();
/**
* Syndrome returns the three values s_997, s_998, and s_999 described above,
* packed into a 30-bit integer, where each group of 10 bits encodes one value.
*/
uint32_t Syndrome(const uint32_t residue) {
// low is the first 5 bits, corresponding to the r6 in the residue
// (the constant term of the polynomial).
uint32_t low = residue & 0x1f;
// We begin by setting s_j = low = r6 for all three values of j, because these are unconditional.
uint32_t result = low ^ (low << 10) ^ (low << 20);
// Then for each following bit, we add the corresponding precomputed constant if the bit is 1.
// For example, 0x31edd3c4 is 1100011110 1101110100 1111000100 when unpacked in groups of 10
// bits, corresponding exactly to a^999 || a^998 || a^997 (matching the corresponding values in
// GF1024_EXP above). In this way, we compute all three values of s_j for j in (997, 998, 999)
// simultaneously. Recall that XOR corresponds to addition in a characteristic 2 field.
for (int i = 0; i < 25; ++i) {
result ^= ((residue >> (5+i)) & 1 ? SYNDROME_CONSTS.at(i) : 0);
}
return result;
}
/** Convert to lower case. */
inline unsigned char LowerCase(unsigned char c)
{
return (c >= 'A' && c <= 'Z') ? (c - 'A') + 'a' : c;
}
/** Return indices of invalid characters in a Bech32 string. */
bool CheckCharacters(const std::string& str, std::vector<int>& errors)
{
bool lower = false, upper = false;
for (size_t i = 0; i < str.size(); ++i) {
unsigned char c{(unsigned char)(str[i])};
if (c >= 'a' && c <= 'z') {
if (upper) {
errors.push_back(i);
} else {
lower = true;
}
} else if (c >= 'A' && c <= 'Z') {
if (lower) {
errors.push_back(i);
} else {
upper = true;
}
} else if (c < 33 || c > 126) {
errors.push_back(i);
}
}
return errors.empty();
}
/** Expand a HRP for use in checksum computation. */
data ExpandHRP(const std::string& hrp)
{
data ret;
ret.reserve(hrp.size() + 90);
ret.resize(hrp.size() * 2 + 1);
for (size_t i = 0; i < hrp.size(); ++i) {
unsigned char c = hrp[i];
ret[i] = c >> 5;
ret[i + hrp.size() + 1] = c & 0x1f;
}
ret[hrp.size()] = 0;
return ret;
}
/** Verify a checksum. */
Encoding VerifyChecksum(const std::string& hrp, const data& values)
{
// PolyMod computes what value to xor into the final values to make the checksum 0. However,
// if we required that the checksum was 0, it would be the case that appending a 0 to a valid
// list of values would result in a new valid list. For that reason, Bech32 requires the
// resulting checksum to be 1 instead. In Bech32m, this constant was amended. See
// https://gist.github.com/sipa/14c248c288c3880a3b191f978a34508e for details.
const uint32_t check = PolyMod(Cat(ExpandHRP(hrp), values));
if (check == EncodingConstant(Encoding::BECH32)) return Encoding::BECH32;
if (check == EncodingConstant(Encoding::BECH32M)) return Encoding::BECH32M;
return Encoding::INVALID;
}
/** Create a checksum. */
data CreateChecksum(Encoding encoding, const std::string& hrp, const data& values)
{
data enc = Cat(ExpandHRP(hrp), values);
enc.resize(enc.size() + 6); // Append 6 zeroes
uint32_t mod = PolyMod(enc) ^ EncodingConstant(encoding); // Determine what to XOR into those 6 zeroes.
data ret(6);
for (size_t i = 0; i < 6; ++i) {
// Convert the 5-bit groups in mod to checksum values.
ret[i] = (mod >> (5 * (5 - i))) & 31;
}
return ret;
}
} // namespace
/** Encode a Bech32 or Bech32m string. */
std::string Encode(Encoding encoding, const std::string& hrp, const data& values) {
// First ensure that the HRP is all lowercase. BIP-173 and BIP350 require an encoder
// to return a lowercase Bech32/Bech32m string, but if given an uppercase HRP, the
// result will always be invalid.
for (const char& c : hrp) assert(c < 'A' || c > 'Z');
data checksum = CreateChecksum(encoding, hrp, values);
data combined = Cat(values, checksum);
std::string ret = hrp + '1';
ret.reserve(ret.size() + combined.size());
for (const auto c : combined) {
ret += CHARSET[c];
}
return ret;
}
/** Decode a Bech32 or Bech32m string. */
DecodeResult Decode(const std::string& str) {
std::vector<int> errors;
if (!CheckCharacters(str, errors)) return {};
size_t pos = str.rfind('1');
if (str.size() > 90 || pos == str.npos || pos == 0 || pos + 7 > str.size()) {
return {};
}
data values(str.size() - 1 - pos);
for (size_t i = 0; i < str.size() - 1 - pos; ++i) {
unsigned char c = str[i + pos + 1];
int8_t rev = CHARSET_REV[c];
if (rev == -1) {
return {};
}
values[i] = rev;
}
std::string hrp;
for (size_t i = 0; i < pos; ++i) {
hrp += LowerCase(str[i]);
}
Encoding result = VerifyChecksum(hrp, values);
if (result == Encoding::INVALID) return {};
return {result, std::move(hrp), data(values.begin(), values.end() - 6)};
}
/** Find index of an incorrect character in a Bech32 string. */
std::pair<std::string, std::vector<int>> LocateErrors(const std::string& str) {
std::vector<int> error_locations{};
if (str.size() > 90) {
error_locations.resize(str.size() - 90);
std::iota(error_locations.begin(), error_locations.end(), 90);
return std::make_pair("Bech32 string too long", std::move(error_locations));
}
if (!CheckCharacters(str, error_locations)){
return std::make_pair("Invalid character or mixed case", std::move(error_locations));
}
size_t pos = str.rfind('1');
if (pos == str.npos) {
return std::make_pair("Missing separator", std::vector<int>{});
}
if (pos == 0 || pos + 7 > str.size()) {
error_locations.push_back(pos);
return std::make_pair("Invalid separator position", std::move(error_locations));
}
std::string hrp;
for (size_t i = 0; i < pos; ++i) {
hrp += LowerCase(str[i]);
}
size_t length = str.size() - 1 - pos; // length of data part
data values(length);
for (size_t i = pos + 1; i < str.size(); ++i) {
unsigned char c = str[i];
int8_t rev = CHARSET_REV[c];
if (rev == -1) {
error_locations.push_back(i);
return std::make_pair("Invalid Base 32 character", std::move(error_locations));
}
values[i - pos - 1] = rev;
}
// We attempt error detection with both bech32 and bech32m, and choose the one with the fewest errors
// We can't simply use the segwit version, because that may be one of the errors
std::optional<Encoding> error_encoding;
for (Encoding encoding : {Encoding::BECH32, Encoding::BECH32M}) {
std::vector<int> possible_errors;
// Recall that (ExpandHRP(hrp) ++ values) is interpreted as a list of coefficients of a polynomial
// over GF(32). PolyMod computes the "remainder" of this polynomial modulo the generator G(x).
uint32_t residue = PolyMod(Cat(ExpandHRP(hrp), values)) ^ EncodingConstant(encoding);
// All valid codewords should be multiples of G(x), so this remainder (after XORing with the encoding
// constant) should be 0 - hence 0 indicates there are no errors present.
if (residue != 0) {
// If errors are present, our polynomial must be of the form C(x) + E(x) where C is the valid
// codeword (a multiple of G(x)), and E encodes the errors.
uint32_t syn = Syndrome(residue);
// Unpack the three 10-bit syndrome values
int s0 = syn & 0x3FF;
int s1 = (syn >> 10) & 0x3FF;
int s2 = syn >> 20;
// Get the discrete logs of these values in GF1024 for more efficient computation
int l_s0 = GF1024_LOG.at(s0);
int l_s1 = GF1024_LOG.at(s1);
int l_s2 = GF1024_LOG.at(s2);
// First, suppose there is only a single error. Then E(x) = e1*x^p1 for some position p1
// Then s0 = E((e)^997) = e1*(e)^(997*p1) and s1 = E((e)^998) = e1*(e)^(998*p1)
// Therefore s1/s0 = (e)^p1, and by the same logic, s2/s1 = (e)^p1 too.
// Hence, s1^2 == s0*s2, which is exactly the condition we check first:
if (l_s0 != -1 && l_s1 != -1 && l_s2 != -1 && (2 * l_s1 - l_s2 - l_s0 + 2046) % 1023 == 0) {
// Compute the error position p1 as l_s1 - l_s0 = p1 (mod 1023)
size_t p1 = (l_s1 - l_s0 + 1023) % 1023; // the +1023 ensures it is positive
// Now because s0 = e1*(e)^(997*p1), we get e1 = s0/((e)^(997*p1)). Remember that (e)^1023 = 1,
// so 1/((e)^997) = (e)^(1023-997).
int l_e1 = l_s0 + (1023 - 997) * p1;
// Finally, some sanity checks on the result:
// - The error position should be within the length of the data
// - e1 should be in GF(32), which implies that e1 = (e)^(33k) for some k (the 31 non-zero elements
// of GF(32) form an index 33 subgroup of the 1023 non-zero elements of GF(1024)).
if (p1 < length && !(l_e1 % 33)) {
// Polynomials run from highest power to lowest, so the index p1 is from the right.
// We don't return e1 because it is dangerous to suggest corrections to the user,
// the user should check the address themselves.
possible_errors.push_back(str.size() - p1 - 1);
}
// Otherwise, suppose there are two errors. Then E(x) = e1*x^p1 + e2*x^p2.
} else {
// For all possible first error positions p1
for (size_t p1 = 0; p1 < length; ++p1) {
// We have guessed p1, and want to solve for p2. Recall that E(x) = e1*x^p1 + e2*x^p2, so
// s0 = E((e)^997) = e1*(e)^(997^p1) + e2*(e)^(997*p2), and similar for s1 and s2.
//
// Consider s2 + s1*(e)^p1
// = 2e1*(e)^(999^p1) + e2*(e)^(999*p2) + e2*(e)^(998*p2)*(e)^p1
// = e2*(e)^(999*p2) + e2*(e)^(998*p2)*(e)^p1
// (Because we are working in characteristic 2.)
// = e2*(e)^(998*p2) ((e)^p2 + (e)^p1)
//
int s2_s1p1 = s2 ^ (s1 == 0 ? 0 : GF1024_EXP.at((l_s1 + p1) % 1023));
if (s2_s1p1 == 0) continue;
int l_s2_s1p1 = GF1024_LOG.at(s2_s1p1);
// Similarly, s1 + s0*(e)^p1
// = e2*(e)^(997*p2) ((e)^p2 + (e)^p1)
int s1_s0p1 = s1 ^ (s0 == 0 ? 0 : GF1024_EXP.at((l_s0 + p1) % 1023));
if (s1_s0p1 == 0) continue;
int l_s1_s0p1 = GF1024_LOG.at(s1_s0p1);
// So, putting these together, we can compute the second error position as
// (e)^p2 = (s2 + s1^p1)/(s1 + s0^p1)
// p2 = log((e)^p2)
size_t p2 = (l_s2_s1p1 - l_s1_s0p1 + 1023) % 1023;
// Sanity checks that p2 is a valid position and not the same as p1
if (p2 >= length || p1 == p2) continue;
// Now we want to compute the error values e1 and e2.
// Similar to above, we compute s1 + s0*(e)^p2
// = e1*(e)^(997*p1) ((e)^p1 + (e)^p2)
int s1_s0p2 = s1 ^ (s0 == 0 ? 0 : GF1024_EXP.at((l_s0 + p2) % 1023));
if (s1_s0p2 == 0) continue;
int l_s1_s0p2 = GF1024_LOG.at(s1_s0p2);
// And compute (the log of) 1/((e)^p1 + (e)^p2))
int inv_p1_p2 = 1023 - GF1024_LOG.at(GF1024_EXP.at(p1) ^ GF1024_EXP.at(p2));
// Then (s1 + s0*(e)^p1) * (1/((e)^p1 + (e)^p2)))
// = e2*(e)^(997*p2)
// Then recover e2 by dividing by (e)^(997*p2)
int l_e2 = l_s1_s0p1 + inv_p1_p2 + (1023 - 997) * p2;
// Check that e2 is in GF(32)
if (l_e2 % 33) continue;
// In the same way, (s1 + s0*(e)^p2) * (1/((e)^p1 + (e)^p2)))
// = e1*(e)^(997*p1)
// So recover e1 by dividing by (e)^(997*p1)
int l_e1 = l_s1_s0p2 + inv_p1_p2 + (1023 - 997) * p1;
// Check that e1 is in GF(32)
if (l_e1 % 33) continue;
// Again, we do not return e1 or e2 for safety.
// Order the error positions from the left of the string and return them
if (p1 > p2) {
possible_errors.push_back(str.size() - p1 - 1);
possible_errors.push_back(str.size() - p2 - 1);
} else {
possible_errors.push_back(str.size() - p2 - 1);
possible_errors.push_back(str.size() - p1 - 1);
}
break;
}
}
} else {
// No errors
return std::make_pair("", std::vector<int>{});
}
if (error_locations.empty() || (!possible_errors.empty() && possible_errors.size() < error_locations.size())) {
error_locations = std::move(possible_errors);
if (!error_locations.empty()) error_encoding = encoding;
}
}
std::string error_message = error_encoding == Encoding::BECH32M ? "Invalid Bech32m checksum"
: error_encoding == Encoding::BECH32 ? "Invalid Bech32 checksum"
: "Invalid checksum";
return std::make_pair(error_message, std::move(error_locations));
}
} // namespace bech32