-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlq.go
395 lines (351 loc) · 12.8 KB
/
lq.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
// Package lq implements a spatial database which stores objects each of which
// is associated with a 2D point (a location in a 2D space). The points serve as
// the "search key" for the associated object. It is intended to efficiently
// answer "circle inclusion" queries, also known as "range queries": basically
// questions like:
//
// Which objects are within a radius R of the location L?
//
// In this context, "efficiently" means significantly faster than the naive,
// brute force O(n) testing of all known points. Additionally it is assumed that
// the objects move along unpredictable paths, so that extensive preprocessing
// (for example, constructing a Delaunay triangulation of the point set) may not
// be practical.
//
// The implementation is a "bin lattice": a 2D rectangular array of brick-shaped
// (rectangles) regions of space. Each region is represented by a pointer to a
// (possibly empty) doubly-linked list of objects. All of these sub-bricks are
// the same size. All bricks are aligned with the global coordinate axes.
//
// Terminology used here: the region of space associated with a bin is called a
// sub-brick. The collection of all sub-bricks is called the super-brick. The
// super-brick should be specified to surround the region of space in which
// (almost) all the key-points will exist. If key-points move outside the
// super-brick everything will continue to work, but without the speed advantage
// provided by the spatial subdivision. For more details about how to specify
// the super-brick's position, size and subdivisions see NewDB below.
//
// Overview of usage: an application using this facility to perform locality
// queries over objects of type myStruct would first create a database with:
// db := NewDB[myObject]()
// Then, call Attach for each objects to attach to the database. Attach returns
// a 'proxy' object, which is a link between the user object and its
// representation in the locality database.
// p := db.Attach(obj)
// When a client object moves, the application calls Update with the new
// location. Update is a method of the lq.Proxy object, that's why the the proxy
// object is generally kept within the user object, though it can be managed
// separately:
// db.Update(123, 456)
// To perform a query, DB.ForEachWithinRadius is passed a user function which
// will be called for all client objects in the locality. See Func below for
// more detail.
// func myFunc(obj T, sqDist float64) {
// // do something with obj
// }
// DB.ForEachWithinRadius(x, y, radius, myFunc, nil)
// The DB.FindNearestInRadius function can be used to find a single nearest
// neighbor using the database. Note that "locality query" is also known as
// neighborhood query, neighborhood search, near neighbor search, and range
// query.
//
// Author: Aurélien Rainone
//
// Based on original work of: Craig Reynolds
package lq
import "math"
// DB represents the spatial database.
//
// Typically one of these would be created (by a call to DB.NewDB)
// for a given application.
type DB[T comparable] struct {
xorg, yorg float64 // xorg and yorg are the super-brick corner minimum coordinates
szx, szy float64 // length of the edges of the super-brick
xdiv, ydiv int // number of sub-brick divisions in each direction
// Actual bins, allocated in a 1D slice (use coordsToIndex to go from bin
// coordinates to index in this slice).
bins []*Proxy[T]
// Extra bin for "everything else" (points outside super-brick).
other *Proxy[T]
}
// NewDB creates a new database, allocates the bin array, and returns the DB
// object.
//
// The six parameters define the properties of the 'super-brick':
// - xorg/yorg: x/y coordinates of one corner of the super-brick, its minimum x
// and y extent.
// - xsize/ysize: the width and height of the super-brick.
// - xdiv/ydiv: the number of subdivisions (sub-bricks) along each axis.
func NewDB[T comparable](xorg, yorg, xsize, ysize float64, xdiv, divy int) *DB[T] {
return &DB[T]{
xorg: xorg,
yorg: yorg,
szx: xsize,
szy: ysize,
xdiv: xdiv,
ydiv: divy,
bins: make([]*Proxy[T], xdiv*divy),
}
}
// Attach attaches a new object to the database and returns a proxy object.
func (db *DB[T]) Attach(t T, x, y float64) *Proxy[T] {
obj := &Proxy[T]{object: t}
db.Update(obj, x, y)
return obj
}
// Detach detaches the given proxy object from the database.
func (db *DB[T]) Detach(obj *Proxy[T]) {
obj.removeFromBin()
return
}
// Update updates the location of a proxy object in the database.
//
// It should be called for each client object every time its location changes.
// For example, in an animation application, this would be called each frame for
// every moving object.
func (db *DB[T]) Update(obj *Proxy[T], x, y float64) {
// find bin for new location
newBin := db.binForLocation(x, y)
// Store location in client object, for future reference.
obj.x = x
obj.y = y
// Has object's changed bin?
if newBin != obj.bin {
obj.removeFromBin()
obj.addToBin(newBin)
}
}
// coordsToIndex determines the index into linear bin array given 2D bin
// indices
func (db *DB[T]) coordsToIndex(ix, iy int) int {
return ix*db.ydiv + iy
}
// Find the bin ID for a location in space. The location is given in
// terms of its XY coordinates. The bin ID is a pointer to a pointer
// to the bin contents list.
func (db *DB[T]) binForLocation(x, y float64) **Proxy[T] {
// If point is outside the super-brick, return the 'other' bin.
if x < db.xorg {
return &(db.other)
}
if y < db.yorg {
return &(db.other)
}
if x >= db.xorg+db.szx {
return &(db.other)
}
if y >= db.yorg+db.szy {
return &(db.other)
}
// Point is inside the super brik, compute the bin coordinates and return that bin.
ix := int((x - db.xorg) / db.szx * float64(db.xdiv))
iy := int((y - db.yorg) / db.szy * float64(db.ydiv))
return &(db.bins[db.coordsToIndex(ix, iy)])
}
// Func is the function called, for each proxy object, when iterating over a set
// of proxies. Func gets called with the object in question and the squared
// distance from the center of the search locality circle (x,y) to the object's
// key-point (when applicable).
type Func[T any] func(obj T, sqDist float64)
// ForEachObject applies a user-supplied function to all objects in the
// database, regardless of locality (see DB.ForEachWithinRadius). Since there's
// no search locality, the squared distance argument to f is undefined.
func (db *DB[T]) ForEachObject(f Func[T]) {
for i := range db.bins {
db.bins[i].traverseBin(f)
}
db.other.traverseBin(f)
}
// DetachAll detaches all proxy objects from the database.
func (db *DB[T]) DetachAll() {
for i := range db.bins {
pbin := &(db.bins[i])
for *pbin != nil {
(*pbin).removeFromBin()
}
}
if db.other != nil {
pbin := &(db.other)
for *pbin != nil {
(*pbin).removeFromBin()
}
}
}
// This subroutine of ForEachWithinRadius efficiently traverses a
// subset of bins specified by max and min bin coordinates.
func (db *DB[T]) forEachInRadiusClipped(x, y, radius float64, f Func[T], xmin, ymin, xmax, ymax int) {
sqRadius := radius * radius
// Loop for x bins across diameter of circle.
idx := xmin * db.ydiv
for i := xmin; i <= xmax; i++ {
// Loop for y bins across diameter of circle.
jdx := ymin
for j := ymin; j <= ymax; j++ {
// Traverse current bin's client object list.
traverseBinWithinRadius(db.bins[idx+jdx], x, y, sqRadius, f)
jdx++
}
idx += db.ydiv
}
}
// If the query region (sphere) extends outside of the "super-brick"
// we need to check for objects in the catch-all "other" bin which
// holds any object which are not inside the regular sub-bricks
func (db *DB[T]) forEachObjectOutside(x, y, radius float64, f Func[T]) {
// traverse the "other" bin's client object list
traverseBinWithinRadius(db.other, x, y, radius*radius, f)
}
// ForEachWithinRadius applies an application-specific ObjectFunc to all objects
// in a certain locality.
//
// The locality is specified as a circle with a given center and radius. All
// objects whose location (key-point) is within this circle are identified and
// the f ObjectFunc function is applied to them. This method uses the lq
// database to quickly reject any objects in bins which do not overlap with the
// circle of interest. Incremental calculation of index values is used to
// efficiently traverse the bins of interest.
func (db *DB[T]) ForEachWithinRadius(x, y, radius float64, f Func[T]) {
partlyOut := false
completelyOutside := x+radius < db.xorg ||
y+radius < db.yorg ||
x-radius >= db.xorg+db.szx ||
y-radius >= db.yorg+db.szy
// Is the circle completely outside the "super brick"?
if completelyOutside {
db.forEachObjectOutside(x, y, radius, f)
}
// compute min and max bin coordinates for each dimension
minBinX := int(float64(db.xdiv) * (x - radius - db.xorg) / db.szx)
minBinY := int(float64(db.ydiv) * (y - radius - db.yorg) / db.szy)
maxBinX := int(float64(db.xdiv) * (x + radius - db.xorg) / db.szx)
maxBinY := int(float64(db.ydiv) * (y + radius - db.yorg) / db.szy)
// clip bin coordinates
if minBinX < 0 {
partlyOut = true
minBinX = 0
}
if minBinY < 0 {
partlyOut = true
minBinY = 0
}
if maxBinX >= db.xdiv {
partlyOut = true
maxBinX = db.xdiv - 1
}
if maxBinY >= db.ydiv {
partlyOut = true
maxBinY = db.ydiv - 1
}
// Map function over outside objects if necessary (if clipped)
if partlyOut {
db.forEachObjectOutside(x, y, radius, f)
}
// Map function over objects in bins
db.forEachInRadiusClipped(x, y, radius, f, minBinX, minBinY, maxBinX, maxBinY)
}
// FindNearestInRadius searches the database to find the object whose key-point
// is nearest to a given location yet within a given radius.
//
// That is, it finds the object (if any) within a given search circle which is
// nearest to the circle's center. The ignored argument can be used to exclude
// an object from consideration. This is useful when looking for the nearest
// neighbor of an object in the database, since otherwise it would be its own
// nearest neighbor. The function returns the nearest object and true, or if
// there was no object with the provided radius, it returns the zero value of T,
// and false.
func (db *DB[T]) FindNearestInRadius(x, y, radius float64, ignored T) (T, bool) {
nearest := *new(T)
minSqDist := math.MaxFloat64
found := false
// Map search helper function over all objects within radius.
db.ForEachWithinRadius(x, y, radius, func(obj T, sqDist float64) {
if ignored == obj {
return
}
if sqDist < minSqDist {
// Update nearest
nearest = obj
minSqDist = sqDist
found = true
}
})
return nearest, found
}
// Proxy is a proxy for a client (application) object in the spatial database.
//
// One of these should be created for each client object. This might be included
// within the structure of a client object, or could be allocated separately.
type Proxy[T any] struct {
// Previous/next objects in this bin, or nil.
prev, next *Proxy[T]
// Bin (pointer to pointer to bin contents list).
bin **Proxy[T]
// Client object interface.
object T
// Object's location ("key point") used for spatial sorting.
x, y float64
}
// addToBin adds a given client object to a given bin, linking it into the bin
// contents list.
func (cp *Proxy[T]) addToBin(bin **Proxy[T]) {
if *bin == nil {
cp.prev = nil
cp.next = nil
*bin = cp
} else {
cp.prev = nil
cp.next = *bin
(*bin).prev = cp
*bin = cp
}
cp.bin = bin
}
// removeFromBin removes a given client object from its current bin, unlinking
// it from the bin contents list.
func (cp *Proxy[T]) removeFromBin() {
// Adjust pointers if object is currently in a bin
if cp.bin != nil {
// If this object is at the head of the list, move the bin
// pointer to the next item in the list (might be nil).
if *(cp.bin) == cp {
*(cp.bin) = cp.next
}
// If there is a prev object, link its "next" pointer to the
// object after this one.
if cp.prev != nil {
cp.prev.next = cp.next
}
// If there is a next object, link its "prev" pointer to the
// object before this one.
if cp.next != nil {
cp.next.prev = cp.prev
}
}
// Null out prev, next and bin pointers of this object.
cp.prev = nil
cp.next = nil
cp.bin = nil
}
// Given a bin's list of client proxies, traverse the list and invoke
// the given ObjectFunc on each object that falls within the
// search radius.
func traverseBinWithinRadius[T comparable](cp *Proxy[T], x, y, sqRadius float64, fn Func[T]) {
for cp != nil {
// compute distance (squared) from this client
// object to given locality circle's centerpoint
sqDist := (x-cp.x)*(x-cp.x) + (y-cp.y)*(y-cp.y)
// apply function if client object within sphere
if sqDist < sqRadius {
fn(cp.object, sqDist)
}
// consider next client object in bin list
cp = cp.next
}
}
func (cp *Proxy[T]) traverseBin(fn Func[T]) {
// Walk down proxy list, applying call-back function to each one.
for cp != nil {
fn(cp.object, 0)
cp = cp.next
}
}