forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_gpu.py
744 lines (664 loc) · 31.6 KB
/
neural_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The Neural GPU Model."""
import time
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import function
import data_utils as data
do_jit = False # Gives more speed but experimental for now.
jit_scope = tf.contrib.compiler.jit.experimental_jit_scope
def conv_linear(args, kw, kh, nin, nout, rate, do_bias, bias_start, prefix):
"""Convolutional linear map."""
if not isinstance(args, (list, tuple)):
args = [args]
with tf.variable_scope(prefix):
with tf.device("/cpu:0"):
k = tf.get_variable("CvK", [kw, kh, nin, nout])
if len(args) == 1:
arg = args[0]
else:
arg = tf.concat(axis=3, values=args)
res = tf.nn.convolution(arg, k, dilation_rate=(rate, 1), padding="SAME")
if not do_bias: return res
with tf.device("/cpu:0"):
bias_term = tf.get_variable(
"CvB", [nout], initializer=tf.constant_initializer(bias_start))
bias_term = tf.reshape(bias_term, [1, 1, 1, nout])
return res + bias_term
def sigmoid_cutoff(x, cutoff):
"""Sigmoid with cutoff, e.g., 1.2sigmoid(x) - 0.1."""
y = tf.sigmoid(x)
if cutoff < 1.01: return y
d = (cutoff - 1.0) / 2.0
return tf.minimum(1.0, tf.maximum(0.0, cutoff * y - d), name="cutoff_min")
@function.Defun(tf.float32, noinline=True)
def sigmoid_cutoff_12(x):
"""Sigmoid with cutoff 1.2, specialized for speed and memory use."""
y = tf.sigmoid(x)
return tf.minimum(1.0, tf.maximum(0.0, 1.2 * y - 0.1), name="cutoff_min_12")
@function.Defun(tf.float32, noinline=True)
def sigmoid_hard(x):
"""Hard sigmoid."""
return tf.minimum(1.0, tf.maximum(0.0, 0.25 * x + 0.5))
def place_at14(decided, selected, it):
"""Place selected at it-th coordinate of decided, dim=1 of 4."""
slice1 = decided[:, :it, :, :]
slice2 = decided[:, it + 1:, :, :]
return tf.concat(axis=1, values=[slice1, selected, slice2])
def place_at13(decided, selected, it):
"""Place selected at it-th coordinate of decided, dim=1 of 3."""
slice1 = decided[:, :it, :]
slice2 = decided[:, it + 1:, :]
return tf.concat(axis=1, values=[slice1, selected, slice2])
def tanh_cutoff(x, cutoff):
"""Tanh with cutoff, e.g., 1.1tanh(x) cut to [-1. 1]."""
y = tf.tanh(x)
if cutoff < 1.01: return y
d = (cutoff - 1.0) / 2.0
return tf.minimum(1.0, tf.maximum(-1.0, (1.0 + d) * y))
@function.Defun(tf.float32, noinline=True)
def tanh_hard(x):
"""Hard tanh."""
return tf.minimum(1.0, tf.maximum(0.0, x))
def layer_norm(x, nmaps, prefix, epsilon=1e-5):
"""Layer normalize the 4D tensor x, averaging over the last dimension."""
with tf.variable_scope(prefix):
scale = tf.get_variable("layer_norm_scale", [nmaps],
initializer=tf.ones_initializer())
bias = tf.get_variable("layer_norm_bias", [nmaps],
initializer=tf.zeros_initializer())
mean, variance = tf.nn.moments(x, [3], keep_dims=True)
norm_x = (x - mean) / tf.sqrt(variance + epsilon)
return norm_x * scale + bias
def conv_gru(inpts, mem, kw, kh, nmaps, rate, cutoff, prefix, do_layer_norm,
args_len=None):
"""Convolutional GRU."""
def conv_lin(args, suffix, bias_start):
total_args_len = args_len or len(args) * nmaps
res = conv_linear(args, kw, kh, total_args_len, nmaps, rate, True,
bias_start, prefix + "/" + suffix)
if do_layer_norm:
return layer_norm(res, nmaps, prefix + "/" + suffix)
else:
return res
if cutoff == 1.2:
reset = sigmoid_cutoff_12(conv_lin(inpts + [mem], "r", 1.0))
gate = sigmoid_cutoff_12(conv_lin(inpts + [mem], "g", 1.0))
elif cutoff > 10:
reset = sigmoid_hard(conv_lin(inpts + [mem], "r", 1.0))
gate = sigmoid_hard(conv_lin(inpts + [mem], "g", 1.0))
else:
reset = sigmoid_cutoff(conv_lin(inpts + [mem], "r", 1.0), cutoff)
gate = sigmoid_cutoff(conv_lin(inpts + [mem], "g", 1.0), cutoff)
if cutoff > 10:
candidate = tanh_hard(conv_lin(inpts + [reset * mem], "c", 0.0))
else:
# candidate = tanh_cutoff(conv_lin(inpts + [reset * mem], "c", 0.0), cutoff)
candidate = tf.tanh(conv_lin(inpts + [reset * mem], "c", 0.0))
return gate * mem + (1 - gate) * candidate
CHOOSE_K = 256
def memory_call(q, l, nmaps, mem_size, vocab_size, num_gpus, update_mem):
raise ValueError("Fill for experiments with additional memory structures.")
def memory_run(step, nmaps, mem_size, batch_size, vocab_size,
global_step, do_training, update_mem, decay_factor, num_gpus,
target_emb_weights, output_w, gpu_targets_tn, it):
"""Run memory."""
q = step[:, 0, it, :]
mlabels = gpu_targets_tn[:, it, 0]
res, mask, mem_loss = memory_call(
q, mlabels, nmaps, mem_size, vocab_size, num_gpus, update_mem)
res = tf.gather(target_emb_weights, res) * tf.expand_dims(mask[:, 0], 1)
# Mix gold and original in the first steps, 20% later.
gold = tf.nn.dropout(tf.gather(target_emb_weights, mlabels), 0.7)
use_gold = 1.0 - tf.cast(global_step, tf.float32) / (1000. * decay_factor)
use_gold = tf.maximum(use_gold, 0.2) * do_training
mem = tf.cond(tf.less(tf.random_uniform([]), use_gold),
lambda: use_gold * gold + (1.0 - use_gold) * res,
lambda: res)
mem = tf.reshape(mem, [-1, 1, 1, nmaps])
return mem, mem_loss, update_mem
@tf.RegisterGradient("CustomIdG")
def _custom_id_grad(_, grads):
return grads
def quantize(t, quant_scale, max_value=1.0):
"""Quantize a tensor t with each element in [-max_value, max_value]."""
t = tf.minimum(max_value, tf.maximum(t, -max_value))
big = quant_scale * (t + max_value) + 0.5
with tf.get_default_graph().gradient_override_map({"Floor": "CustomIdG"}):
res = (tf.floor(big) / quant_scale) - max_value
return res
def quantize_weights_op(quant_scale, max_value):
ops = [v.assign(quantize(v, quant_scale, float(max_value)))
for v in tf.trainable_variables()]
return tf.group(*ops)
def autoenc_quantize(x, nbits, nmaps, do_training, layers=1):
"""Autoencoder into nbits vectors of bits, using noise and sigmoids."""
enc_x = tf.reshape(x, [-1, nmaps])
for i in xrange(layers - 1):
enc_x = tf.layers.dense(enc_x, nmaps, name="autoenc_%d" % i)
enc_x = tf.layers.dense(enc_x, nbits, name="autoenc_%d" % (layers - 1))
noise = tf.truncated_normal(tf.shape(enc_x), stddev=2.0)
dec_x = sigmoid_cutoff_12(enc_x + noise * do_training)
dec_x = tf.reshape(dec_x, [-1, nbits])
for i in xrange(layers):
dec_x = tf.layers.dense(dec_x, nmaps, name="autodec_%d" % i)
return tf.reshape(dec_x, tf.shape(x))
def make_dense(targets, noclass, low_param):
"""Move a batch of targets to a dense 1-hot representation."""
low = low_param / float(noclass - 1)
high = 1.0 - low * (noclass - 1)
targets = tf.cast(targets, tf.int64)
return tf.one_hot(targets, depth=noclass, on_value=high, off_value=low)
def reorder_beam(beam_size, batch_size, beam_val, output, is_first,
tensors_to_reorder):
"""Reorder to minimize beam costs."""
# beam_val is [batch_size x beam_size]; let b = batch_size * beam_size
# decided is len x b x a x b
# output is b x out_size; step is b x len x a x b;
outputs = tf.split(axis=0, num_or_size_splits=beam_size, value=tf.nn.log_softmax(output))
all_beam_vals, all_beam_idx = [], []
beam_range = 1 if is_first else beam_size
for i in xrange(beam_range):
top_out, top_out_idx = tf.nn.top_k(outputs[i], k=beam_size)
cur_beam_val = beam_val[:, i]
top_out = tf.Print(top_out, [top_out, top_out_idx, beam_val, i,
cur_beam_val], "GREPO", summarize=8)
all_beam_vals.append(top_out + tf.expand_dims(cur_beam_val, 1))
all_beam_idx.append(top_out_idx)
all_beam_idx = tf.reshape(tf.transpose(tf.concat(axis=1, values=all_beam_idx), [1, 0]),
[-1])
top_beam, top_beam_idx = tf.nn.top_k(tf.concat(axis=1, values=all_beam_vals), k=beam_size)
top_beam_idx = tf.Print(top_beam_idx, [top_beam, top_beam_idx],
"GREP", summarize=8)
reordered = [[] for _ in xrange(len(tensors_to_reorder) + 1)]
top_out_idx = []
for i in xrange(beam_size):
which_idx = top_beam_idx[:, i] * batch_size + tf.range(batch_size)
top_out_idx.append(tf.gather(all_beam_idx, which_idx))
which_beam = top_beam_idx[:, i] / beam_size # [batch]
which_beam = which_beam * batch_size + tf.range(batch_size)
reordered[0].append(tf.gather(output, which_beam))
for i, t in enumerate(tensors_to_reorder):
reordered[i + 1].append(tf.gather(t, which_beam))
new_tensors = [tf.concat(axis=0, values=t) for t in reordered]
top_out_idx = tf.concat(axis=0, values=top_out_idx)
return (top_beam, new_tensors[0], top_out_idx, new_tensors[1:])
class NeuralGPU(object):
"""Neural GPU Model."""
def __init__(self, nmaps, vec_size, niclass, noclass, dropout,
max_grad_norm, cutoff, nconvs, kw, kh, height, mem_size,
learning_rate, min_length, num_gpus, num_replicas,
grad_noise_scale, sampling_rate, act_noise=0.0, do_rnn=False,
atrous=False, beam_size=1, backward=True, do_layer_norm=False,
autoenc_decay=1.0):
# Feeds for parameters and ops to update them.
self.nmaps = nmaps
if backward:
self.global_step = tf.Variable(0, trainable=False, name="global_step")
self.cur_length = tf.Variable(min_length, trainable=False)
self.cur_length_incr_op = self.cur_length.assign_add(1)
self.lr = tf.Variable(learning_rate, trainable=False)
self.lr_decay_op = self.lr.assign(self.lr * 0.995)
self.do_training = tf.placeholder(tf.float32, name="do_training")
self.update_mem = tf.placeholder(tf.int32, name="update_mem")
self.noise_param = tf.placeholder(tf.float32, name="noise_param")
# Feeds for inputs, targets, outputs, losses, etc.
self.input = tf.placeholder(tf.int32, name="inp")
self.target = tf.placeholder(tf.int32, name="tgt")
self.prev_step = tf.placeholder(tf.float32, name="prev_step")
gpu_input = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.input)
gpu_target = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.target)
gpu_prev_step = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.prev_step)
batch_size = tf.shape(gpu_input[0])[0]
if backward:
adam_lr = 0.005 * self.lr
adam = tf.train.AdamOptimizer(adam_lr, epsilon=1e-3)
def adam_update(grads):
return adam.apply_gradients(zip(grads, tf.trainable_variables()),
global_step=self.global_step,
name="adam_update")
# When switching from Adam to SGD we perform reverse-decay.
if backward:
global_step_float = tf.cast(self.global_step, tf.float32)
sampling_decay_exponent = global_step_float / 100000.0
sampling_decay = tf.maximum(0.05, tf.pow(0.5, sampling_decay_exponent))
self.sampling = sampling_rate * 0.05 / sampling_decay
else:
self.sampling = tf.constant(0.0)
# Cache variables on cpu if needed.
if num_replicas > 1 or num_gpus > 1:
with tf.device("/cpu:0"):
caching_const = tf.constant(0)
tf.get_variable_scope().set_caching_device(caching_const.op.device)
# partitioner = tf.variable_axis_size_partitioner(1024*256*4)
# tf.get_variable_scope().set_partitioner(partitioner)
def gpu_avg(l):
if l[0] is None:
for elem in l:
assert elem is None
return 0.0
if len(l) < 2:
return l[0]
return sum(l) / float(num_gpus)
self.length_tensor = tf.placeholder(tf.int32, name="length")
with tf.device("/cpu:0"):
emb_weights = tf.get_variable(
"embedding", [niclass, vec_size],
initializer=tf.random_uniform_initializer(-1.7, 1.7))
if beam_size > 0:
target_emb_weights = tf.get_variable(
"target_embedding", [noclass, nmaps],
initializer=tf.random_uniform_initializer(-1.7, 1.7))
e0 = tf.scatter_update(emb_weights,
tf.constant(0, dtype=tf.int32, shape=[1]),
tf.zeros([1, vec_size]))
output_w = tf.get_variable("output_w", [nmaps, noclass], tf.float32)
def conv_rate(layer):
if atrous:
return 2**layer
return 1
# pylint: disable=cell-var-from-loop
def enc_step(step):
"""Encoder step."""
if autoenc_decay < 1.0:
quant_step = autoenc_quantize(step, 16, nmaps, self.do_training)
if backward:
exp_glob = tf.train.exponential_decay(1.0, self.global_step - 10000,
1000, autoenc_decay)
dec_factor = 1.0 - exp_glob # * self.do_training
dec_factor = tf.cond(tf.less(self.global_step, 10500),
lambda: tf.constant(0.05), lambda: dec_factor)
else:
dec_factor = 1.0
cur = tf.cond(tf.less(tf.random_uniform([]), dec_factor),
lambda: quant_step, lambda: step)
else:
cur = step
if dropout > 0.0001:
cur = tf.nn.dropout(cur, keep_prob)
if act_noise > 0.00001:
cur += tf.truncated_normal(tf.shape(cur)) * act_noise_scale
# Do nconvs-many CGRU steps.
if do_jit and tf.get_variable_scope().reuse:
with jit_scope():
for layer in xrange(nconvs):
cur = conv_gru([], cur, kw, kh, nmaps, conv_rate(layer),
cutoff, "ecgru_%d" % layer, do_layer_norm)
else:
for layer in xrange(nconvs):
cur = conv_gru([], cur, kw, kh, nmaps, conv_rate(layer),
cutoff, "ecgru_%d" % layer, do_layer_norm)
return cur
zero_tgt = tf.zeros([batch_size, nmaps, 1])
zero_tgt.set_shape([None, nmaps, 1])
def dec_substep(step, decided):
"""Decoder sub-step."""
cur = step
if dropout > 0.0001:
cur = tf.nn.dropout(cur, keep_prob)
if act_noise > 0.00001:
cur += tf.truncated_normal(tf.shape(cur)) * act_noise_scale
# Do nconvs-many CGRU steps.
if do_jit and tf.get_variable_scope().reuse:
with jit_scope():
for layer in xrange(nconvs):
cur = conv_gru([decided], cur, kw, kh, nmaps, conv_rate(layer),
cutoff, "dcgru_%d" % layer, do_layer_norm)
else:
for layer in xrange(nconvs):
cur = conv_gru([decided], cur, kw, kh, nmaps, conv_rate(layer),
cutoff, "dcgru_%d" % layer, do_layer_norm)
return cur
# pylint: enable=cell-var-from-loop
def dec_step(step, it, it_int, decided, output_ta, tgts,
mloss, nupd_in, out_idx, beam_cost):
"""Decoder step."""
nupd, mem_loss = 0, 0.0
if mem_size > 0:
it_incr = tf.minimum(it+1, length - 1)
mem, mem_loss, nupd = memory_run(
step, nmaps, mem_size, batch_size, noclass, self.global_step,
self.do_training, self.update_mem, 10, num_gpus,
target_emb_weights, output_w, gpu_targets_tn, it_incr)
step = dec_substep(step, decided)
output_l = tf.expand_dims(tf.expand_dims(step[:, it, 0, :], 1), 1)
# Calculate argmax output.
output = tf.reshape(output_l, [-1, nmaps])
# pylint: disable=cell-var-from-loop
output = tf.matmul(output, output_w)
if beam_size > 1:
beam_cost, output, out, reordered = reorder_beam(
beam_size, batch_size, beam_cost, output, it_int == 0,
[output_l, out_idx, step, decided])
[output_l, out_idx, step, decided] = reordered
else:
# Scheduled sampling.
out = tf.multinomial(tf.stop_gradient(output), 1)
out = tf.to_int32(tf.squeeze(out, [1]))
out_write = output_ta.write(it, output_l[:batch_size, :, :, :])
output = tf.gather(target_emb_weights, out)
output = tf.reshape(output, [-1, 1, nmaps])
output = tf.concat(axis=1, values=[output] * height)
tgt = tgts[it, :, :, :]
selected = tf.cond(tf.less(tf.random_uniform([]), self.sampling),
lambda: output, lambda: tgt)
# pylint: enable=cell-var-from-loop
dec_write = place_at14(decided, tf.expand_dims(selected, 1), it)
out_idx = place_at13(
out_idx, tf.reshape(out, [beam_size * batch_size, 1, 1]), it)
if mem_size > 0:
mem = tf.concat(axis=2, values=[mem] * height)
dec_write = place_at14(dec_write, mem, it_incr)
return (step, dec_write, out_write, mloss + mem_loss, nupd_in + nupd,
out_idx, beam_cost)
# Main model construction.
gpu_outputs = []
gpu_losses = []
gpu_grad_norms = []
grads_list = []
gpu_out_idx = []
self.after_enc_step = []
for gpu in xrange(num_gpus): # Multi-GPU towers, average gradients later.
length = self.length_tensor
length_float = tf.cast(length, tf.float32)
if gpu > 0:
tf.get_variable_scope().reuse_variables()
gpu_outputs.append([])
gpu_losses.append([])
gpu_grad_norms.append([])
with tf.name_scope("gpu%d" % gpu), tf.device("/gpu:%d" % gpu):
# Main graph creation loop.
data.print_out("Creating model.")
start_time = time.time()
# Embed inputs and calculate mask.
with tf.device("/cpu:0"):
tgt_shape = tf.shape(tf.squeeze(gpu_target[gpu], [1]))
weights = tf.where(tf.squeeze(gpu_target[gpu], [1]) > 0,
tf.ones(tgt_shape), tf.zeros(tgt_shape))
# Embed inputs and targets.
with tf.control_dependencies([e0]):
start = tf.gather(emb_weights, gpu_input[gpu]) # b x h x l x nmaps
gpu_targets_tn = gpu_target[gpu] # b x 1 x len
if beam_size > 0:
embedded_targets_tn = tf.gather(target_emb_weights,
gpu_targets_tn)
embedded_targets_tn = tf.transpose(
embedded_targets_tn, [2, 0, 1, 3]) # len x b x 1 x nmaps
embedded_targets_tn = tf.concat(axis=2, values=[embedded_targets_tn] * height)
# First image comes from start by applying convolution and adding 0s.
start = tf.transpose(start, [0, 2, 1, 3]) # Now b x len x h x vec_s
first = conv_linear(start, 1, 1, vec_size, nmaps, 1, True, 0.0, "input")
first = layer_norm(first, nmaps, "input")
# Computation steps.
keep_prob = dropout * 3.0 / tf.sqrt(length_float)
keep_prob = 1.0 - self.do_training * keep_prob
act_noise_scale = act_noise * self.do_training
# Start with a convolutional gate merging previous step.
step = conv_gru([gpu_prev_step[gpu]], first,
kw, kh, nmaps, 1, cutoff, "first", do_layer_norm)
# This is just for running a baseline RNN seq2seq model.
if do_rnn:
self.after_enc_step.append(step) # Not meaningful here, but needed.
def lstm_cell():
return tf.contrib.rnn.BasicLSTMCell(height * nmaps)
cell = tf.contrib.rnn.MultiRNNCell(
[lstm_cell() for _ in range(nconvs)])
with tf.variable_scope("encoder"):
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
cell, tf.reshape(step, [batch_size, length, height * nmaps]),
dtype=tf.float32, time_major=False)
# Attention.
attn = tf.layers.dense(
encoder_outputs, height * nmaps, name="attn1")
# pylint: disable=cell-var-from-loop
@function.Defun(noinline=True)
def attention_query(query, attn_v):
vecs = tf.tanh(attn + tf.expand_dims(query, 1))
mask = tf.reduce_sum(vecs * tf.reshape(attn_v, [1, 1, -1]), 2)
mask = tf.nn.softmax(mask)
return tf.reduce_sum(encoder_outputs * tf.expand_dims(mask, 2), 1)
with tf.variable_scope("decoder"):
def decoder_loop_fn((state, prev_cell_out, _), (cell_inp, cur_tgt)):
"""Decoder loop function."""
attn_q = tf.layers.dense(prev_cell_out, height * nmaps,
name="attn_query")
attn_res = attention_query(attn_q, tf.get_variable(
"attn_v", [height * nmaps],
initializer=tf.random_uniform_initializer(-0.1, 0.1)))
concatenated = tf.reshape(tf.concat(axis=1, values=[cell_inp, attn_res]),
[batch_size, 2 * height * nmaps])
cell_inp = tf.layers.dense(
concatenated, height * nmaps, name="attn_merge")
output, new_state = cell(cell_inp, state)
mem_loss = 0.0
if mem_size > 0:
res, mask, mem_loss = memory_call(
output, cur_tgt, height * nmaps, mem_size, noclass,
num_gpus, self.update_mem)
res = tf.gather(target_emb_weights, res)
res *= tf.expand_dims(mask[:, 0], 1)
output = tf.layers.dense(
tf.concat(axis=1, values=[output, res]), height * nmaps, name="rnnmem")
return new_state, output, mem_loss
# pylint: enable=cell-var-from-loop
gpu_targets = tf.squeeze(gpu_target[gpu], [1]) # b x len
gpu_tgt_trans = tf.transpose(gpu_targets, [1, 0])
dec_zero = tf.zeros([batch_size, 1], dtype=tf.int32)
dec_inp = tf.concat(axis=1, values=[dec_zero, gpu_targets])
dec_inp = dec_inp[:, :length]
embedded_dec_inp = tf.gather(target_emb_weights, dec_inp)
embedded_dec_inp_proj = tf.layers.dense(
embedded_dec_inp, height * nmaps, name="dec_proj")
embedded_dec_inp_proj = tf.transpose(embedded_dec_inp_proj,
[1, 0, 2])
init_vals = (encoder_state,
tf.zeros([batch_size, height * nmaps]), 0.0)
_, dec_outputs, mem_losses = tf.scan(
decoder_loop_fn, (embedded_dec_inp_proj, gpu_tgt_trans),
initializer=init_vals)
mem_loss = tf.reduce_mean(mem_losses)
outputs = tf.layers.dense(dec_outputs, nmaps, name="out_proj")
# Final convolution to get logits, list outputs.
outputs = tf.matmul(tf.reshape(outputs, [-1, nmaps]), output_w)
outputs = tf.reshape(outputs, [length, batch_size, noclass])
gpu_out_idx.append(tf.argmax(outputs, 2))
else: # Here we go with the Neural GPU.
# Encoder.
enc_length = length
step = enc_step(step) # First step hard-coded.
# pylint: disable=cell-var-from-loop
i = tf.constant(1)
c = lambda i, _s: tf.less(i, enc_length)
def enc_step_lambda(i, step):
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
new_step = enc_step(step)
return (i + 1, new_step)
_, step = tf.while_loop(
c, enc_step_lambda, [i, step],
parallel_iterations=1, swap_memory=True)
# pylint: enable=cell-var-from-loop
self.after_enc_step.append(step)
# Decoder.
if beam_size > 0:
output_ta = tf.TensorArray(
dtype=tf.float32, size=length, dynamic_size=False,
infer_shape=False, name="outputs")
out_idx = tf.zeros([beam_size * batch_size, length, 1],
dtype=tf.int32)
decided_t = tf.zeros([beam_size * batch_size, length,
height, vec_size])
# Prepare for beam search.
tgts = tf.concat(axis=1, values=[embedded_targets_tn] * beam_size)
beam_cost = tf.zeros([batch_size, beam_size])
step = tf.concat(axis=0, values=[step] * beam_size)
# First step hard-coded.
step, decided_t, output_ta, mem_loss, nupd, oi, bc = dec_step(
step, 0, 0, decided_t, output_ta, tgts, 0.0, 0, out_idx,
beam_cost)
tf.get_variable_scope().reuse_variables()
# pylint: disable=cell-var-from-loop
def step_lambda(i, step, dec_t, out_ta, ml, nu, oi, bc):
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
s, d, t, nml, nu, oi, bc = dec_step(
step, i, 1, dec_t, out_ta, tgts, ml, nu, oi, bc)
return (i + 1, s, d, t, nml, nu, oi, bc)
i = tf.constant(1)
c = lambda i, _s, _d, _o, _ml, _nu, _oi, _bc: tf.less(i, length)
_, step, _, output_ta, mem_loss, nupd, out_idx, _ = tf.while_loop(
c, step_lambda,
[i, step, decided_t, output_ta, mem_loss, nupd, oi, bc],
parallel_iterations=1, swap_memory=True)
# pylint: enable=cell-var-from-loop
gpu_out_idx.append(tf.squeeze(out_idx, [2]))
outputs = output_ta.stack()
outputs = tf.squeeze(outputs, [2, 3]) # Now l x b x nmaps
else:
# If beam_size is 0 or less, we don't have a decoder.
mem_loss = 0.0
outputs = tf.transpose(step[:, :, 1, :], [1, 0, 2])
gpu_out_idx.append(tf.argmax(outputs, 2))
# Final convolution to get logits, list outputs.
outputs = tf.matmul(tf.reshape(outputs, [-1, nmaps]), output_w)
outputs = tf.reshape(outputs, [length, batch_size, noclass])
gpu_outputs[gpu] = tf.nn.softmax(outputs)
# Calculate cross-entropy loss and normalize it.
targets_soft = make_dense(tf.squeeze(gpu_target[gpu], [1]),
noclass, 0.1)
targets_soft = tf.reshape(targets_soft, [-1, noclass])
targets_hard = make_dense(tf.squeeze(gpu_target[gpu], [1]),
noclass, 0.0)
targets_hard = tf.reshape(targets_hard, [-1, noclass])
output = tf.transpose(outputs, [1, 0, 2])
xent_soft = tf.reshape(tf.nn.softmax_cross_entropy_with_logits(
logits=tf.reshape(output, [-1, noclass]), labels=targets_soft),
[batch_size, length])
xent_hard = tf.reshape(tf.nn.softmax_cross_entropy_with_logits(
logits=tf.reshape(output, [-1, noclass]), labels=targets_hard),
[batch_size, length])
low, high = 0.1 / float(noclass - 1), 0.9
const = high * tf.log(high) + float(noclass - 1) * low * tf.log(low)
weight_sum = tf.reduce_sum(weights) + 1e-20
true_perp = tf.reduce_sum(xent_hard * weights) / weight_sum
soft_loss = tf.reduce_sum(xent_soft * weights) / weight_sum
perp_loss = soft_loss + const
# Final loss: cross-entropy + shared parameter relaxation part + extra.
mem_loss = 0.5 * tf.reduce_mean(mem_loss) / length_float
total_loss = perp_loss + mem_loss
gpu_losses[gpu].append(true_perp)
# Gradients.
if backward:
data.print_out("Creating backward pass for the model.")
grads = tf.gradients(
total_loss, tf.trainable_variables(),
colocate_gradients_with_ops=True)
for g_i, g in enumerate(grads):
if isinstance(g, tf.IndexedSlices):
grads[g_i] = tf.convert_to_tensor(g)
grads, norm = tf.clip_by_global_norm(grads, max_grad_norm)
gpu_grad_norms[gpu].append(norm)
for g in grads:
if grad_noise_scale > 0.001:
g += tf.truncated_normal(tf.shape(g)) * self.noise_param
grads_list.append(grads)
else:
gpu_grad_norms[gpu].append(0.0)
data.print_out("Created model for gpu %d in %.2f s."
% (gpu, time.time() - start_time))
self.updates = []
self.after_enc_step = tf.concat(axis=0, values=self.after_enc_step) # Concat GPUs.
if backward:
tf.get_variable_scope()._reuse = False
tf.get_variable_scope().set_caching_device(None)
grads = [gpu_avg([grads_list[g][i] for g in xrange(num_gpus)])
for i in xrange(len(grads_list[0]))]
update = adam_update(grads)
self.updates.append(update)
else:
self.updates.append(tf.no_op())
self.losses = [gpu_avg([gpu_losses[g][i] for g in xrange(num_gpus)])
for i in xrange(len(gpu_losses[0]))]
self.out_idx = tf.concat(axis=0, values=gpu_out_idx)
self.grad_norms = [gpu_avg([gpu_grad_norms[g][i] for g in xrange(num_gpus)])
for i in xrange(len(gpu_grad_norms[0]))]
self.outputs = [tf.concat(axis=1, values=[gpu_outputs[g] for g in xrange(num_gpus)])]
self.quantize_op = quantize_weights_op(512, 8)
if backward:
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)
def step(self, sess, inp, target, do_backward_in, noise_param=None,
beam_size=2, eos_id=2, eos_cost=0.0, update_mem=None, state=None):
"""Run a step of the network."""
batch_size, height, length = inp.shape[0], inp.shape[1], inp.shape[2]
do_backward = do_backward_in
train_mode = True
if do_backward_in is None:
do_backward = False
train_mode = False
if update_mem is None:
update_mem = do_backward
feed_in = {}
# print " feeding sequences of length %d" % length
if state is None:
state = np.zeros([batch_size, length, height, self.nmaps])
feed_in[self.prev_step.name] = state
feed_in[self.length_tensor.name] = length
feed_in[self.noise_param.name] = noise_param if noise_param else 0.0
feed_in[self.do_training.name] = 1.0 if do_backward else 0.0
feed_in[self.update_mem.name] = 1 if update_mem else 0
if do_backward_in is False:
feed_in[self.sampling.name] = 0.0
index = 0 # We're dynamic now.
feed_out = []
if do_backward:
feed_out.append(self.updates[index])
feed_out.append(self.grad_norms[index])
if train_mode:
feed_out.append(self.losses[index])
feed_in[self.input.name] = inp
feed_in[self.target.name] = target
feed_out.append(self.outputs[index])
if train_mode:
# Make a full-sequence training step with one call to session.run.
res = sess.run([self.after_enc_step] + feed_out, feed_in)
after_enc_state, res = res[0], res[1:]
else:
# Make a full-sequence decoding step with one call to session.run.
feed_in[self.sampling.name] = 1.1 # Sample every time.
res = sess.run([self.after_enc_step, self.out_idx] + feed_out, feed_in)
after_enc_state, out_idx = res[0], res[1]
res = [res[2][l] for l in xrange(length)]
outputs = [out_idx[:, i] for i in xrange(length)]
cost = [0.0 for _ in xrange(beam_size * batch_size)]
seen_eos = [0 for _ in xrange(beam_size * batch_size)]
for idx, logit in enumerate(res):
best = outputs[idx]
for b in xrange(batch_size):
if seen_eos[b] > 1:
cost[b] -= eos_cost
else:
cost[b] += np.log(logit[b][best[b]])
if best[b] in [eos_id]:
seen_eos[b] += 1
res = [[-c for c in cost]] + outputs
# Collect and output results.
offset = 0
norm = None
if do_backward:
offset = 2
norm = res[1]
if train_mode:
outputs = res[offset + 1]
outputs = [outputs[l] for l in xrange(length)]
return res[offset], outputs, norm, after_enc_state