TorchAccelerator is a distributed training acceleration framework that transfers eager execution to graph-based intermediate representation on Pytorch. TorchAccelerator accelerates model training on Pytorch by means of compilation optimization and manual operator optimization.
Currently we only provide docker run.
- Driver Version: 470.82.01+
- CUDA Version: 11.3+
Create Container
image url: registry.cn-hangzhou.aliyuncs.com/pai-dlc/pytorch-training:cuda11.3.1-cudnn8-devel-ubuntu20.04-py38-0625
$ nvidia-docker run -it --name $YOUR_NAME --gpus all -v ${YOUR_ROOT_DIR}:/workspace registry.cn-hangzhou.aliyuncs.com/pai-dlc/pytorch-training:cuda11.3.1-cudnn8-devel-ubuntu20.04-py38-0625 bash
Prepare EasyCV
Refer to: quick_start.md
The first few steps to run initialization will be very slow, please be patient.
$ USE_TORCHACC=1 python tools/train.py configs/classification/imagenet/swint/imagenet_swin_tiny_patch4_window7_224_jpg_torchacc.py --work_dir ./work_dirs --fp16
$ USE_TORCHACC=1 xlarun --nproc_per_node=${NUM_GPUS} --master_port=29500 tools/train.py configs/classification/imagenet/swint/imagenet_swin_tiny_patch4_window7_224_jpg_torchacc.py --work_dir ./work_dirs --fp16
Device: Tesla V100
The throughput is as follows:
Raw | Torchacc | Speedup | ||
---|---|---|---|---|
Swin | 319.68 | 582.94 | 82.35% | batch_size=160 (per gpu) / fp16 |
Device: Tesla V100
The throughput of 8 gpus is as follows:
Raw | Torchacc | Speedup | ||
---|---|---|---|---|
Swin | 2250 | 3462.7 | 54% | batch_size=160 (per gpu) / fp16 |