forked from isaaccorley/pytorch-enhance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_lightning_example.py
97 lines (72 loc) · 2.38 KB
/
pytorch_lightning_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import torch.nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from torch_enhance.datasets import BSDS300, Set14, Set5
from torch_enhance.models import SRCNN
from torch_enhance import metrics
class Module(pl.LightningModule):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, x):
return self.model(x)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=1e-3)
def training_step(self, batch, batch_idx):
lr, hr = batch
sr = self(lr)
loss = F.mse_loss(sr, hr, reduction="mean")
# metrics
mae = metrics.mae(sr, hr)
psnr = metrics.psnr(sr, hr)
# Logs
self.log("train_loss", loss)
self.log("train_mae", mae)
self.log("train_psnr", psnr)
return loss
def validation_step(self, batch, batch_idx):
lr, hr = batch
sr = self(lr)
loss = F.mse_loss(sr, hr, reduction="mean")
# metrics
mae = metrics.mae(sr, hr)
psnr = metrics.psnr(sr, hr)
# Logs
self.log("val_loss", loss)
self.log("val_mae", mae)
self.log("val_psnr", psnr)
return loss
def test_step(self, batch, batch_idx):
lr, hr = batch
sr = self(lr)
loss = F.mse_loss(sr, hr, reduction="mean")
# metrics
mae = metrics.mae(sr, hr)
psnr = metrics.psnr(sr, hr)
# Logs
self.log("test_loss", loss)
self.log("test_mae", mae)
self.log("test_psnr", psnr)
return loss
if __name__ == '__main__':
scale_factor = 2
# Setup dataloaders
train_dataset = BSDS300(scale_factor=scale_factor)
val_dataset = Set14(scale_factor=scale_factor)
test_dataset = Set5(scale_factor=scale_factor)
train_dataloader = DataLoader(train_dataset, batch_size=32)
val_dataloader = DataLoader(val_dataset, batch_size=1)
test_dataloader = DataLoader(test_dataset, batch_size=1)
# Define model
channels = 3 if train_dataset.color_space == "RGB" else 1
model = SRCNN(scale_factor, channels)
module = Module(model)
trainer = pl.Trainer(max_epochs=5, gpus=1)
trainer.fit(
module,
train_dataloader,
val_dataloader
)
trainer.test(module, test_dataloader)