-
Notifications
You must be signed in to change notification settings - Fork 278
/
Copy pathzth_train.py
177 lines (147 loc) · 6.54 KB
/
zth_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# 搭建深度学习模型
# 导入库
# 自动驾驶模型真实道路模拟行驶
import keras
import tensorflow
import sys
import os
import h5py
import numpy as np
import glob
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Lambda, Conv2D, MaxPooling2D, Dropout, Dense, Flatten
from keras.models import load_model, Model, Input
from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard
from keras.optimizers import Adam, SGD
np.random.seed(0)
# 全局变量
IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS = 120, 160, 3
INPUT_SHAPE = (IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS)
# step1,载入数据,并且分割为训练和验证集
# 问题,数据集太大了,已经超过计算机内存
def load_data():
# load
image_array = np.zeros((1, 120, 160, 3)) # 初始化
label_array = np.zeros((1, 5), 'float')
training_data = glob.glob('training_data_npz/*.npz')
# 匹配所有的符合条件的文件,并将其以list的形式返回。
print("匹配完成。开始读入")
print("一共%d轮", len(training_data))
# if no data, exit,容错判断
if not training_data:
print("No training data in directory, exit")
sys.exit()
i = 0
for single_npz in training_data:
with np.load(single_npz) as data:
print(data.keys())
i = i + 1
print("在打印关键值", i)
train_temp = data['train_imgs']
train_labels_temp = data['train_labels']
image_array = np.vstack((image_array, train_temp)) # 把文件读取都放入,内存
label_array = np.vstack((label_array, train_labels_temp))
print("第%d轮完成", i)
print("循环完了")
X = image_array[1:, :]
y = label_array[1:, :]
print('Image array shape: ' + str(X.shape))
print('Label array shape: ' + str(y.shape))
print(np.mean(X))
print(np.var(X))
# now we can split the data into a training (80), testing(20), and validation set
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=0)
return X_train, X_valid, y_train, y_valid
# step2 建立模型
def build_model(keep_prob):
print("开始编译模型")
model = Sequential()
model.add(Lambda(lambda x: (x/102.83 - 1), input_shape = INPUT_SHAPE))
model.add(Conv2D(24, (5, 5), activation='elu', strides=(2, 2)))
model.add(Conv2D(36, (5, 5), activation='elu', strides=(2, 2)))
model.add(Conv2D(48, (5, 5), activation='elu', strides=(2, 2)))
model.add(Conv2D(64, (3, 3),activation='elu'))
model.add(Conv2D(64, (3, 3),activation='elu'))
model.add(Dropout(keep_prob)) # Dropout将在训练过程中每次更新参数时随机断开一定百分比(p)的输入神经元连接
model.add(Flatten())
#model.add(Dense(500, activation='elu'))
model.add(Dense(250, activation='elu'))
#model.add(Dense(50, activation='elu'))
model.add(Dense(5, activation='softmax'))
model.summary()
return model
# step3 训练模型
def train_model(model, learning_rate, nb_epoch, samples_per_epoch,
batch_size, X_train, X_valid, y_train, y_valid):
# 值保存最好的模型存下来
checkpoint = ModelCheckpoint('model-{epoch:03d}.h5',
monitor='val_loss',
verbose=0,
save_best_only=True,
mode='min')
# EarlyStopping patience:当earlystop被激活(如发现loss相比上一个epoch训练没有下降),
# 则经过patience个epoch后停止训练。
# mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值停止下降则中止训练。在max模式下,当检测值不再上升则停止训练。
early_stop = EarlyStopping(monitor='loss', min_delta=.0005, patience=10,
verbose=1, mode='min')
tensorboard = TensorBoard(log_dir='./logs', histogram_freq=0, batch_size=20, write_graph=True,write_grads=True,
write_images=True, embeddings_freq=0, embeddings_layer_names=None,
embeddings_metadata=None)
# 编译神经网络模型,loss损失函数,optimizer优化器, metrics列表,包含评估模型在训练和测试时网络性能的指标
model.compile(loss='mean_squared_error', optimizer=keras.optimizers.Adam(lr=learning_rate), metrics=['accuracy'])
# 训练神经网络模型,batch_size梯度下降时每个batch包含的样本数,epochs训练多少轮结束,
# verbose是否显示日志信息,validation_data用来验证的数据集
model.fit_generator(batch_generator(X_train, y_train, batch_size),
steps_per_epoch=samples_per_epoch/batch_size,
epochs = nb_epoch,
max_queue_size=1,
validation_data=batch_generator(X_valid, y_valid, batch_size),
validation_steps=len(X_valid)/batch_size,
callbacks=[tensorboard, checkpoint, early_stop],
verbose=2)
# step4
# 可以一个batch一个batch进行训练,CPU和GPU同时开工
def batch_generator(X, y, batch_size):
images = np.empty([batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS])
steers = np.empty([batch_size, 5])
while True:
i = 0
for index in np.random.permutation(X.shape[0]):
images[i] = X[index]
steers[i] = y[index]
i += 1
if i == batch_size:
break
yield (images, steers)
# step5 评估模型
#def evaluate(x_test, y_test):
#score = model.evaluate(x_test, y_test, verbose=0)
#print('Test loss:', score[0])
#print('Test accuracy:', score[1])
def main():
# 打印出超参数
print('-'*30)
print('parameters')
print('-'*30)
keep_prob = 0.5
learning_rate = 0.0001
nb_epoch = 100
samples_per_epoch = 3000
batch_size = 30
print('keep_prob = ', keep_prob)
print('learning_rate = ', learning_rate)
print('nb_epoch = ', nb_epoch)
print('samples_per_epoch = ', samples_per_epoch)
print('batch_size = ', batch_size)
print('-' * 30)
# 开始载入数据
data = load_data()
print("数据加载完毕")
# 编译模型
model = build_model(keep_prob)
# 在数据集上训练模型,保存成model.h5
train_model(model, learning_rate, nb_epoch, samples_per_epoch, batch_size, *data)
print("模型训练完毕")
if __name__ == '__main__':
main()