forked from manuelruder/fast-artistic-videos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfast_artistic_video_vr.lua
591 lines (510 loc) · 26 KB
/
fast_artistic_video_vr.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
require 'torch'
require 'nn'
require 'image'
require 'fast_artistic_video.ShaveImage'
require 'fast_artistic_video.TotalVariation'
require 'fast_artistic_video.InstanceNormalization'
require 'fast_artistic_video.PerceptualCriterion'
require 'fast_artistic_video_core'
local utils = require 'fast_artistic_video.utils'
local preprocess = require 'fast_artistic_video.preprocess'
local flowFile = require 'flowFileLoader'
local vr = require 'fast_artistic_video.vr_helper'
--[[
Use a trained feedforward model to stylize a spherical video.
--]]
local cmd = torch.CmdLine()
-- Input options
cmd:option('-input_pattern', '')
cmd:option('-flow_pattern', '')
cmd:option('-occlusions_pattern', '')
cmd:option('-model_img', '')
cmd:option('-model_vid', '')
-- Processing options
cmd:option('-start_frame', 1)
cmd:option('-continue_with', 1)
cmd:option('-num_frames', 9999)
cmd:option('-invert_occlusions', false)
cmd:option('-fix_occlusions', false, 'Workaround for incomplete Sintel gt occlusion pattern')
cmd:option('-occlusions_min_filter', 7)
cmd:option('-smooth_certainty', false)
cmd:option('-fill_occlusions', 'vgg-mean', 'uniform-random|vgg-mean')
cmd:option('-create_inconsistent', false)
cmd:option('-create_inconsistent_border', false)
cmd:option('-backward', false)
cmd:option('-overlap_pixel_w', 20)
cmd:option('-overlap_pixel_h', 20)
-- Output options
cmd:option('-output_prefix', 'out')
cmd:option('-out_equi_w', 768)
cmd:option('-out_equi_h', 768)
cmd:option('-out_equi', false)
cmd:option('-out_cubemap', false)
cmd:option('-median_filter', 3)
-- GPU options
cmd:option('-gpu', -1)
cmd:option('-backend', 'cuda')
cmd:option('-use_cudnn', 1)
cmd:option('-cudnn_benchmark', 0)
-- Evaluation
cmd:option('-evaluate', false)
cmd:option('-evaluation_file', 'evaluation.txt')
cmd:option('-no_consistency_eval', false)
cmd:option('-flow_pattern_eval', '')
cmd:option('-occlusions_pattern_eval', '')
cmd:option('-invert_occlusions_eval', false)
cmd:option('-backward_eval', false)
cmd:option('-content_weights', '1.0')
cmd:option('-content_layers', '16')
cmd:option('-loss_network', 'models/vgg16.t7')
cmd:option('-style_image', '')
cmd:option('-style_image_size', 256)
cmd:option('-style_weights', '5.0')
cmd:option('-style_layers', '4,9,16,23')
cmd:option('-style_target_type', 'gram', 'gram|mean')
cmd:option('-fix_occlusions_eval', false, 'Workaround for incomplete Sintel gt occlusion pattern')
-- Keep track of other stylized cube faces
last_content = nil
last_segments = {}
prev_last_segments = {}
hplus, wplus = nil, nil
h, w = nil, nil
-- Precomputed maps, so we only have to compute them once
mask_left = nil
mask_right = nil
mask_top = nil
mask_bottom = nil
mask_all = nil
mask_all_div = nil
grad_mask_left, grad_mask_right, grad_mask_top, grad_mask_bottom = nil, nil, nil, nil
grad_mask_left_right, grad_mask_all = nil, nil
warp_map_left, warp_map_right, warp_map_top, warp_map_bottom = nil, nil, nil, nil
equi_map = nil
initialized = false -- Whether maps are initialized
-- Layout:
-- 2
-- 3 6 4 5
-- 1
--
-- Order of processing:
-- 6, 1, 2, 5, 3, 4
local proc_order = { 6, 1, 2, 5, 3, 4 }
local tan30deg = 0.5773502692
local function getFormatedFlowFileName(pattern, fromIndex, toIndex, modeIdx)
local flowFileName = pattern
flowFileName = string.gsub(flowFileName, '{(.-)}',
function(a) return string.format(a, fromIndex) end )
flowFileName = string.gsub(flowFileName, '%[(.-)%]',
function(a) return string.format(a, toIndex) end )
return string.format(flowFileName, modeIdx)
end
function fix_occlusions(flow, disoccluded)
for x=1, flow:size(3) do
for y=1, flow:size(2) do
if flow[1][y][x] < 0
or flow[1][y][x] > flow:size(2)
or flow[2][y][x] < 0
or flow[2][y][x] > flow:size(3) then
disoccluded[1][y][x] = 0
end
end
end
end
function reverse_tensor(t, n)
return t:index(n ,torch.linspace(t:size(n),1,t:size(n)):long())
end
function rotate90(t)
return reverse_tensor(t:transpose(2,3), 2)
end
function rotateMinus90(t)
return reverse_tensor(t:transpose(2,3), 3)
end
function rotate180(t)
return reverse_tensor(reverse_tensor(t, 2), 3)
end
function combineSides(side1, side2, side3, side4, divisor)
local result = torch.cdiv(side1, divisor)
result = torch.add(result, torch.cdiv(side2, divisor))
result = torch.add(result, torch.cdiv(side3, divisor))
result = torch.add(result, torch.cdiv(side4, divisor))
return result
end
function func_load_image(opt, i, dtype)
local mode = (i-1) % 6
local file_idx = math.floor((i-1) / 6) + opt.start_frame
print(string.format(opt.input_pattern, file_idx, mode+1))
if not utils.file_exists(string.format(opt.input_pattern, file_idx, proc_order[mode+1])) then return nil end
local full_image = image.load(string.format(opt.input_pattern, file_idx, proc_order[mode+1]), 3)
if not initialized then
-- Create warping maps and blending masks to transform edges of neighboring cube faces
hplus, wplus = full_image:size(2), full_image:size(3)
h, w = hplus - opt.overlap_pixel_h, wplus - opt.overlap_pixel_w
-- Warping maps
warp_map_left = vr.make_perspective_warp_map_left(hplus, opt.overlap_pixel_w, wplus):type(dtype):contiguous()
mask_left = utils.warp_image(torch.ones(1, hplus, wplus):type(dtype), warp_map_left, dtype)
warp_map_top = vr.make_perspective_warp_map_top(wplus, opt.overlap_pixel_h, hplus):type(dtype):contiguous()
mask_top = utils.warp_image(torch.ones(1, hplus, wplus):type(dtype), warp_map_top, dtype)
warp_map_bottom = vr.make_perspective_warp_map_bottom(wplus, opt.overlap_pixel_h, hplus):type(dtype):contiguous()
mask_bottom = utils.warp_image(torch.ones(1, hplus, wplus):type(dtype), warp_map_bottom, dtype)
warp_map_right = vr.make_perspective_warp_map_right(hplus, opt.overlap_pixel_w, wplus):type(dtype):contiguous()
mask_right = utils.warp_image(torch.ones(1, hplus, wplus):type(dtype), warp_map_right, dtype)
mask_all_div = torch.cmax(mask_left + mask_right + mask_top + mask_bottom, 1)
mask_all = torch.cmin(mask_left + mask_right + mask_top + mask_bottom, 1)
local grad_width_h = opt.overlap_pixel_h - 10
local grad_width_w = opt.overlap_pixel_w - 10
-- Smooth blending masks
grad_mask_left = torch.cat({ utils.make_gradient_mask_w_dec(1, hplus, grad_width_w), torch.zeros(1, hplus, wplus - grad_width_w) }, 3)
grad_mask_right = torch.cat({ torch.zeros(1, hplus, wplus - grad_width_w):double(), utils.make_gradient_mask_w_inc(1, hplus, grad_width_w):double() }, 3)
grad_mask_top = torch.cat({ utils.make_gradient_mask_h_dec(1, grad_width_h, wplus):double(), torch.zeros(1, hplus - grad_width_h, wplus):double() }, 2)
grad_mask_bottom = torch.cat({ torch.zeros(1, hplus - grad_width_h, wplus):double(), utils.make_gradient_mask_h_inc(1, grad_width_h, wplus):double() }, 2)
grad_mask_all = torch.cmax( torch.cmax(grad_mask_left, grad_mask_right), torch.cmax(grad_mask_top, grad_mask_bottom) )
grad_mask_left_right = torch.cmax(grad_mask_left, grad_mask_right)
-- If we want to transform the cube faces into a equirectangular map, precompute the corresponding transformation map
if opt.out_equi then
local r = math.floor(opt.median_filter/2)
equi_map = vr.make_cube_to_equirectangular_map(hplus - 2*r, wplus - 2*r, opt.overlap_pixel_w - r, opt.overlap_pixel_h - r, opt.out_equi_w, opt.out_equi_h):type(dtype)
end
initialized = true
end
last_content = full_image:contiguous()
return full_image:contiguous()
end
function func_load_cert(opt, i, dtype)
local mode = (i-1) % 6
local file_idx = math.floor((i-1) / 6) + opt.start_frame
local cert = torch.zeros(1, hplus, wplus):type(dtype)
local cert_border = torch.zeros(1, hplus, wplus):type(dtype)
-- Make borders as certain since we have a certain correspondence for them from the neighboring cube face
if not opt.create_inconsistent_border then
if mode == 1 or mode == 3 or mode == 4 or mode == 5 then
cert_border = torch.cmax(cert_border, mask_left)
end
if mode == 2 or mode == 3 or mode == 4 or mode == 5 then
cert_border = torch.cmax(cert_border, mask_right)
end
if mode == 4 or mode == 5 then
cert_border = torch.cmax(cert_border, mask_top)
end
if mode == 4 or mode == 5 then
cert_border = torch.cmax(cert_border, mask_bottom)
end
end
-- Certainty map for the rest of the image (occlusions)
if i >= 7 and not opt.create_inconsistent then
local certFileName = getFormatedFlowFileName(opt.occlusions_pattern, file_idx-1, file_idx, proc_order[mode+1])
utils.wait_for_file(certFileName)
local cert_frame = image.load(certFileName, 1):type(dtype)
cert = torch.cmax(cert_frame, cert_border)
else
cert = cert_border
end
return cert
end
function func_make_last_frame_warped(opt, i, dtype, cert)
collectgarbage()
local mode = (i-1) % 6
local file_idx = math.floor((i-1) / 6) + opt.start_frame
local border = torch.zeros(3, hplus, wplus):type(dtype)
local result = torch.zeros(3, hplus, wplus):type(dtype)
local gradMask = nil
-- Neighboring cube faces
if not opt.create_inconsistent_border then
if mode == 1 then
border = utils.warp_image(last_segments[1], warp_map_left, dtype)
gradMask = grad_mask_right
elseif mode == 2 then
border = utils.warp_image(last_segments[1], warp_map_right, dtype)
gradMask = grad_mask_left
elseif mode == 3 then
border = utils.warp_image(last_segments[2], warp_map_left, dtype)
border = torch.add(border, utils.warp_image(last_segments[3], warp_map_right, dtype))
gradMask = grad_mask_left_right
elseif mode == 4 then
border = torch.cdiv(utils.warp_image(rotate90(last_segments[2]), warp_map_left, dtype), mask_all_div:expand(3, hplus, wplus))
border = torch.add(border, torch.cdiv(utils.warp_image(rotateMinus90(last_segments[3]), warp_map_right, dtype), mask_all_div:expand(3, hplus, wplus)))
border = torch.add(border, torch.cdiv(utils.warp_image(last_segments[4], warp_map_top, dtype), mask_all_div:expand(3, hplus, wplus)))
border = torch.add(border, torch.cdiv(utils.warp_image(rotate180(last_segments[1]), warp_map_bottom, dtype), mask_all_div:expand(3, hplus, wplus)))
gradMask = grad_mask_all
elseif mode == 5 then
border = torch.cdiv(utils.warp_image(rotateMinus90(last_segments[2]), warp_map_left, dtype), mask_all_div:expand(3, hplus, wplus))
border = torch.add(border, torch.cdiv(utils.warp_image(rotate90(last_segments[3]), warp_map_right, dtype), mask_all_div:expand(3, hplus, wplus)))
border = torch.add(border, torch.cdiv(utils.warp_image(rotate180(last_segments[1]), warp_map_top, dtype), mask_all_div:expand(3, hplus, wplus)))
border = torch.add(border, torch.cdiv(utils.warp_image(last_segments[4], warp_map_bottom, dtype), mask_all_div:expand(3, hplus, wplus)))
gradMask = grad_mask_all
end
end
-- Starting with the second cube face of the second frame, blend the last frame prior with neighboring cube face prior.
if i >= 7 and not opt.create_inconsistent then
local flowFileName = getFormatedFlowFileName(opt.flow_pattern, file_idx-1, file_idx, proc_order[mode+1])
utils.wait_for_file(flowFileName)
local flow = flowFile.load(flowFileName):type(dtype)
local last_frame_warped = utils.warp_image(prev_last_segments[mode+1], flow, dtype)
local cert_inv = torch.csub(torch.ones(cert:size()):type(cert:type()), cert)
local grad_masks = { grad_mask_right, grad_mask_left, grad_mask_left_right, grad_mask_all, grad_mask_all }
local masks = { mask_left, mask_right, mask_left + mask_right, mask_all, mask_all }
if mode == 0 then
result = last_frame_warped
else
local grad_mask = grad_masks[mode]:type(dtype)
local mask = torch.cmul( torch.cmax(grad_mask, torch.ceil(grad_mask):cmul(cert_inv)), masks[mode] )
local anti_mask = torch.csub(torch.ones(mask:size()):type(dtype), mask)
result = torch.cmul(last_frame_warped, anti_mask:expand(3, hplus, wplus)) + torch.cmul(border, mask:expand(3, hplus, wplus))
end
else
result = border
end
if opt.smooth_certainty then
return result, gradMask:type(dtype):add(-0.5):cmax(0.0):sign():cmax(0.25)
else
return result
end
end
function func_is_single_image(i, opt)
if opt.create_inconsistent then
return i % 6 == 1
else
return i == 1
end
end
function evaluate_edge(img1, img2, edge)
local loss = nn.MSECriterion():type(img1:type())
if edge == 'left' then
return loss:forward(img1[ { {}, {}, {1} } ], img2[ { {}, {}, {img2:size(3)} } ])
elseif edge == 'top' then
return loss:forward(img1[ { {}, {1}, {} } ], img2[ { {}, {img2:size(2)}, {} } ])
end
end
function trim(t, opt)
local oversize_w = opt.overlap_pixel_w/2
local oversize_h = opt.overlap_pixel_h/2
return t[ { {}, {oversize_h+1,hplus-oversize_h}, {oversize_w+1,wplus-oversize_w} } ]
end
function evaluate_edge_top(img1, img2, edgeOther)
local loss = nn.MSECriterion():type(img1:type())
local side1 = img2[ { {}, {1}, {} } ]
local side2 = nil
if edgeOther == 'left' then
side2 = img2[ { {}, {}, {1} } ]:transpose(2, 3)
elseif edgeOther == 'right' then
side2 = reverse_tensor(img2[ { {}, {}, {img2:size(3)} } ]:transpose(2, 3), 3)
elseif edgeOther == 'top' then
side2 = reverse_tensor(img2[ { {}, {1}, {} } ], 2)
elseif edgeOther == 'bottom' then
side2 = img2[ { {}, {img2:size(2)}, {} } ]
end
return loss:forward(side1, side2)
end
-- Evaluates gradients along cut edges.
function evaluate_gradient(img, mask)
local conv_mask_x = torch.Tensor({{-1,0,1}})
local conv_mask_y = torch.Tensor({{-1},{0},{1}})
local gradient_x =
torch.cmax(
torch.cmax(
torch.conv2(img[1]:double(), conv_mask_x,'V'):abs(),
torch.conv2(img[2]:double(), conv_mask_x,'V'):abs()),
torch.conv2(img[3]:double(), conv_mask_x,'V'):abs())
local gradient_y =
torch.cmax(
torch.cmax(
torch.conv2(img[1]:double(), conv_mask_y,'V'):abs(),
torch.conv2(img[2]:double(), conv_mask_y,'V'):abs()),
torch.conv2(img[3]:double(), conv_mask_y,'V'):abs())
gradient_x:type(mask:type())
gradient_y:type(mask:type())
local gradient_mag = torch.sqrt(torch.add(torch.cmul(gradient_x[ { {2,gradient_x:size(1)-1}, {} } ], gradient_x[ { {2,gradient_x:size(1)-1}, {} } ]),
torch.cmul(gradient_y[ { {}, {2,gradient_y:size(2)-1} } ], gradient_y[ { {}, {2,gradient_y:size(2)-1} } ])))
local net1 = nn.SpatialMaxPooling(3, 3, 1, 1, 1, 1):type(mask:type())
local net2 = nn.SpatialMaxPooling(3, 3, 1, 1, 1, 1):type(mask:type())
local mask_gradient_x = net1:forward(torch.conv2(mask[1], conv_mask_x,'V'):abs():view(1,mask:size(2),mask:size(3)-2))
local mask_gradient_y = net2:forward(torch.conv2(mask[1], conv_mask_y,'V'):abs():view(1,mask:size(2)-2,mask:size(3)))
local mask_gradient_mag = torch.cmax(mask_gradient_x[ { {}, {2,mask_gradient_x:size(2)-1}, {} } ], mask_gradient_y[ { {}, {}, {2,mask_gradient_y:size(3)-1} } ])
local masked_gradient_x = torch.cmul(gradient_x, mask_gradient_x)
local masked_gradient_y = torch.cmul(gradient_y, mask_gradient_y)
local masked_gradient_mag = torch.cmul(gradient_mag, mask_gradient_mag)
local gradx_per_pixel_full = gradient_x:sum() / (gradient_x:size(1) * gradient_x:size(2))
local grady_per_pixel_full = gradient_y:sum() / (gradient_y:size(1) * gradient_y:size(2))
local gradmagg_per_pixel_full = (gradient_x:sum() + gradient_y:sum()) / (2*(gradient_mag:size(1) * gradient_mag:size(2)))
local gradx_per_pixel_masked = masked_gradient_x:sum() / mask_gradient_x:sum()
local grady_per_pixel_masked = masked_gradient_y:sum() / mask_gradient_y:sum()
local gradmag_per_pixel_masked = (masked_gradient_x:sum() + masked_gradient_y:sum()) / (mask_gradient_x:sum() + mask_gradient_y:sum())
local gradx_ratio, grady_ratio = gradx_per_pixel_masked / gradx_per_pixel_full, grady_per_pixel_masked / grady_per_pixel_full
local gradmag_ratio = (gradx_ratio * mask_gradient_x:sum() + grady_ratio * mask_gradient_y:sum()) / (mask_gradient_x:sum() + mask_gradient_y:sum())
return gradx_ratio, grady_ratio, gradmag_ratio
end
function load_flow_cert_eval(opt, file_idx, mode, dtype)
local flowFileName_eval = getFormatedFlowFileName(opt.flow_pattern_eval == '' and opt.flow_pattern or opt.flow_pattern_eval, file_idx - 1, file_idx, proc_order[mode+1])
local certFileName_eval = getFormatedFlowFileName(opt.occlusions_pattern_eval == '' and opt.occlusions_pattern or opt.occlusions_pattern_eval, file_idx - 1, file_idx, proc_order[mode+1])
local flow_eval = flowFile.load(flowFileName_eval):type(dtype)
local cert_eval = image.load(certFileName_eval, 1):type(dtype)
if opt.invert_occlusions_eval then
cert_eval:apply(function(x) return 1 - x end)
end
if opt.fix_occlusions_eval then
fix_occlusions(flow_eval, cert_eval)
end
return flow_eval, cert_eval
end
function func_eval(opt, i, func_percept_loss, dtype)
local mode = (i-1) % 6
local file_idx = math.floor((i-1) / 6) + 1
local gradx, grady, gradmag, edge = 0, 0, 0, 0
if mode == 1 then
gradx, grady, gradmag = evaluate_gradient(last_segments[2], utils.min_filter(mask_left, opt.reliable_map_min_filter, mask_left:type()):double())
edge = evaluate_edge(trim(last_segments[1], opt), trim(last_segments[2], opt), 'left')
elseif mode == 2 then
gradx, grady, gradmag = evaluate_gradient(last_segments[3], utils.min_filter(mask_right, opt.reliable_map_min_filter, mask_right:type()):double())
edge = evaluate_edge(trim(last_segments[3], opt), trim(last_segments[1], opt), 'left')
elseif mode == 3 then
gradx, grady, gradmag = evaluate_gradient(last_segments[4], utils.min_filter(torch.add(mask_right, mask_left), opt.reliable_map_min_filter, mask_right:type()):double())
edge = (evaluate_edge(trim(last_segments[2], opt), trim(last_segments[4], opt), 'left')
+ evaluate_edge(trim(last_segments[2], opt), trim(last_segments[4], opt), 'left')) / 2
elseif mode == 4 then
gradx, grady, gradmag = evaluate_gradient(last_segments[mode+1], utils.min_filter(mask_all, opt.reliable_map_min_filter, mask_all:type()):double())
edge = (evaluate_edge_top(trim(last_segments[1], opt), trim(last_segments[5], opt), 'top')
+ evaluate_edge_top(trim(last_segments[2], opt), trim(last_segments[5], opt), 'right')
+ evaluate_edge_top(trim(last_segments[3], opt), trim(last_segments[5], opt), 'left')
+ evaluate_edge_top(trim(last_segments[4], opt), trim(last_segments[5], opt), 'bottom')) / 4
elseif mode == 5 then
gradx, grady, gradmag = evaluate_gradient(last_segments[mode+1], utils.min_filter(mask_all, opt.reliable_map_min_filter, mask_all:type()):double())
end
local style_loss, content_loss = func_percept_loss(last_content, last_segments[mode+1])
local temporal_loss = 0
if i > 6 and not opt.no_consistency_eval then
local pixel_crit = nn.MSECriterion():type(dtype)
local flow_eval, cert_eval = load_flow_cert_eval(opt, file_idx, mode, dtype)
local temporal_loss = nil
if opt.backward_eval then
-- Warp previous image for evaluation, this will also update the certainty mask
local prev_warped_eval = utils.warp_image(last_segments[mode+1], flow_eval, dtype)
temporal_loss = pixel_crit:forward(
torch.cmul(prev_warped_eval, cert_eval:expand(3,hplus,wplus)),
torch.cmul(prev_last_segments[mode+1], cert_eval:expand(3,hplus,wplus)))
else
local prev_warped_eval = utils.warp_image(prev_last_segments[mode+1], flow_eval, dtype)
temporal_loss = pixel_crit:forward(
torch.cmul(prev_warped_eval, cert_eval:expand(3,hplus,wplus)),
torch.cmul(last_segments[mode+1], cert_eval:expand(3,hplus,wplus)))
end
return { gradx, grady, gradmag, edge, style_loss, content_loss, temporal_loss }, 7
elseif opt.no_consistency_eval then
return { gradx, grady, gradmag, edge, style_loss, content_loss }, 6
else
return { gradx, grady, gradmag, edge, style_loss, content_loss, 0 }, 7
end
end
function blend_other_sides(dtype)
local result = {}
local anti_mask = torch.csub(torch.ones(grad_mask_all:size()), grad_mask_all):type(dtype):expand(3, hplus, wplus)
local mask = grad_mask_all:expand(3, hplus, wplus):type(dtype)
local bordersFront = combineSides(
utils.warp_image(last_segments[2], warp_map_right, dtype),
utils.warp_image(last_segments[3], warp_map_left, dtype),
utils.warp_image(rotate180(last_segments[5]), warp_map_bottom, dtype),
utils.warp_image(rotate180(last_segments[6]), warp_map_top, dtype),
mask_all_div:expand(3, hplus, wplus):type(dtype))
result[1] = torch.cmul(last_segments[1], anti_mask) + torch.cmul(bordersFront, mask)
local bordersLeft = combineSides(
utils.warp_image(last_segments[1], warp_map_left, dtype),
utils.warp_image(last_segments[4], warp_map_right, dtype),
utils.warp_image(rotateMinus90(last_segments[5]), warp_map_bottom, dtype),
utils.warp_image(rotate90(last_segments[6]), warp_map_top, dtype),
mask_all_div:expand(3, hplus, wplus):type(dtype))
result[2] = torch.cmul(last_segments[2], anti_mask) + torch.cmul(bordersLeft, mask)
local bordersRight = combineSides(
utils.warp_image(last_segments[1], warp_map_right, dtype),
utils.warp_image(last_segments[4], warp_map_left, dtype),
utils.warp_image(rotate90(last_segments[5]), warp_map_bottom, dtype),
utils.warp_image(rotateMinus90(last_segments[6]), warp_map_top, dtype),
mask_all_div:expand(3, hplus, wplus):type(dtype))
result[3] = torch.cmul(last_segments[3], anti_mask) + torch.cmul(bordersRight, mask)
local bordersBack = combineSides(
utils.warp_image(last_segments[2], warp_map_left, dtype),
utils.warp_image(last_segments[3], warp_map_right, dtype),
utils.warp_image(last_segments[5], warp_map_bottom, dtype),
utils.warp_image(last_segments[6], warp_map_top, dtype),
mask_all_div:expand(3, hplus, wplus):type(dtype))
result[4] = torch.cmul(last_segments[4], anti_mask) + torch.cmul(bordersBack, mask)
local bordersTop = combineSides(
utils.warp_image(rotate180(last_segments[1]), warp_map_bottom, dtype),
utils.warp_image(rotate90(last_segments[2]), warp_map_left, dtype),
utils.warp_image(rotateMinus90(last_segments[3]), warp_map_right, dtype),
utils.warp_image(last_segments[4], warp_map_top, dtype),
mask_all_div:expand(3, hplus, wplus):type(dtype))
result[5] = torch.cmul(last_segments[5], anti_mask) + torch.cmul(bordersTop, mask)
local bordersBottom = combineSides(
utils.warp_image(rotate180(last_segments[1]), warp_map_top, dtype),
utils.warp_image(rotateMinus90(last_segments[2]), warp_map_left, dtype),
utils.warp_image(rotate90(last_segments[3]), warp_map_right, dtype),
utils.warp_image(last_segments[4], warp_map_bottom, dtype),
mask_all_div:expand(3, hplus, wplus):type(dtype))
result[6] = torch.cmul(last_segments[6], anti_mask) + torch.cmul(bordersBottom, mask)
return result
end
function func_save_image(opt, i, frame)
local mode = (i-1) % 6
-- Save image
local oversize_w = opt.overlap_pixel_w/2 - math.floor(opt.median_filter/2)
local oversize_h = opt.overlap_pixel_h/2 - math.floor(opt.median_filter/2)
local file_idx = math.floor((i-1) / 6) + 1
local out_path = opt.output_prefix .. file_idx .. "_" .. mode .. ".png"
local out_dir = paths.dirname(out_path)
if not path.isdir(out_dir) then
paths.mkdir(out_dir)
end
--print('Writing output image to ' .. out_path)
--image.save(out_path, frame[ { {}, {oversize_h+1,hplus-oversize_h}, {oversize_w+1,wplus-oversize_w} } ])
--image.save(out_path, frame)
last_segments[mode+1] = frame
if mode == 5 then
-- For the output, blend neighboring cube faces again to reduce artifacts
prev_last_segments = blend_other_sides(frame:type())
local min_filtered_sides = {}
for j=1,6 do
if opt.median_filter > 0 then
table.insert(min_filtered_sides, utils.median_filter(prev_last_segments[j], opt.median_filter))
else
table.insert(min_filtered_sides, prev_last_segments[j])
end
end
if opt.out_equi then
local equi = utils.warp_image( torch.cat({min_filtered_sides[1], min_filtered_sides[2], min_filtered_sides[3], min_filtered_sides[4], rotate180(min_filtered_sides[5]), rotate180(min_filtered_sides[6])}, 3), equi_map, frame:type())
image.save(string.format("%s-%05d_equi.png", opt.output_prefix, file_idx), equi)
end
if opt.out_cubemap then
local cubemap = torch.cat( {
min_filtered_sides[4][ { {}, {oversize_h+1,hplus-oversize_h}, {oversize_w+1,wplus-oversize_w} } ],
min_filtered_sides[1][ { {}, {oversize_h+1,hplus-oversize_h}, {oversize_w+1,wplus-oversize_w} } ],
rotate90(min_filtered_sides[5][ { {}, {oversize_h+1,hplus-oversize_h}, {oversize_w+1,wplus-oversize_w} } ]),
rotateMinus90(min_filtered_sides[6][ { {}, {oversize_h+1,hplus-oversize_h}, {oversize_w+1,wplus-oversize_w} } ]),
min_filtered_sides[3][ { {}, {oversize_h+1,hplus-oversize_h}, {oversize_w+1,wplus-oversize_w} } ],
min_filtered_sides[2][ { {}, {oversize_h+1,hplus-oversize_h}, {oversize_w+1,wplus-oversize_w} } ] }, 3)
image.save(string.format("%s-%05d_cubemap.png", opt.output_prefix, file_idx), cubemap)
end
end
end
local function main()
local opt = cmd:parse(arg)
if (opt.input_pattern == '') then
error('Must give -input_pattern')
end
if (not opt.create_inconsistent) and (opt.flow_pattern == '' or opt.occlusions_pattern == '') then
error('Must give -flow_pattern and -occlusions_pattern')
end
if opt.gpu >= 0 and opt.backend == "cuda" then
require 'stn'
end
opt.num_frames = opt.num_frames * 6
opt.scale_factor = 1
if opt.continue_with > 1 then
for i=1,6 do
local out_path = opt.output_prefix .. opt.continue_with .. "_" .. i-1 .. ".png"
prev_last_segments[i] = image.load(out_path, 3)
prev_last_segments[i] = prev_last_segments[i]:cuda()
prev_last_segments[i] = prev_last_segments[i]:contiguous()
end
opt.continue_with = (opt.continue_with-1) * 6 + 1
end
run_fast_neural_video(opt, func_load_image, func_load_cert, func_eval, func_make_last_frame_warped, func_is_single_image, func_save_image)
end
main()