-
Notifications
You must be signed in to change notification settings - Fork 591
/
Copy pathyolo.py
154 lines (139 loc) · 5.94 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#! /usr/bin/env python
# -*- coding: utf-8 -*-
"""
Run a YOLO_v3 style detection model on test images.
"""
import colorsys
import os
import random
from timeit import time
from timeit import default_timer as timer ### to calculate FPS
import cv2
import numpy as np
from keras import backend as K
from keras.models import load_model
from PIL import Image, ImageFont, ImageDraw
from yolo3.model import yolo_eval
from yolo3.utils import letterbox_image
import argparse
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input",help="path to input video", default = "./test_video/det_t1_video_00315_test.avi")
ap.add_argument("-c", "--class",help="name of class", default = "person")
args = vars(ap.parse_args())
class YOLO(object):
def __init__(self):
self.model_path = './model_data/yolo.h5'
self.anchors_path = 'model_data/yolo_anchors.txt'
self.classes_path = 'model_data/coco_classes.txt'
#具体参数可实验后进行调整
if args["class"] == 'person':
self.score = 0.6 #0.8
self.iou = 0.6
self.model_image_size = (416,416)
if args["class"] == 'car':
self.score = 0.6
self.iou = 0.6
self.model_image_size = (416, 416)
if args["class"] == 'bicycle' or args["class"] == 'motorcycle':
self.score = 0.6
self.iou = 0.6
self.model_image_size = (416, 416)
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.sess = K.get_session()
#self.model_image_size = (416, 416) # fixed size or (None, None) small targets:(320,320) mid targets:(960,960)
self.is_fixed_size = self.model_image_size != (None, None)
self.boxes, self.scores, self.classes = self.generate()
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
#print(class_names)
return class_names
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
anchors = np.array(anchors).reshape(-1, 2)
return anchors
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.'
self.yolo_model = load_model(model_path, compile=False)
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
random.seed(10101) # Fixed seed for consistent colors across runs.
random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou)
return boxes, scores, classes
def detect_image(self, image):
if self.is_fixed_size:
assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
else:
new_image_size = (image.width - (image.width % 32),
image.height - (image.height % 32))
boxed_image = letterbox_image(image, new_image_size)
image_data = np.array(boxed_image, dtype='float32')
#print(image_data.shape)
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
return_boxs = []
return_class_name = []
person_counter = 0
for i, c in reversed(list(enumerate(out_classes))):
predicted_class = self.class_names[c]
#print(self.class_names[c])
'''
if predicted_class != 'person' and predicted_class != 'car':
print(predicted_class)
continue
'''
if predicted_class != args["class"]:
#print(predicted_class)
continue
person_counter += 1
#if predicted_class != 'car':
#continue
#label = predicted_class
box = out_boxes[i]
#score = out_scores[i]
x = int(box[1])
y = int(box[0])
w = int(box[3]-box[1])
h = int(box[2]-box[0])
if x < 0 :
w = w + x
x = 0
if y < 0 :
h = h + y
y = 0
return_boxs.append([x,y,w,h])
#print(return_boxs)
return_class_name.append([predicted_class])
#cv2.putText(image, str(self.class_names[c]),(int(box[0]), int(box[1] -50)),0, 5e-3 * 150, (0,255,0),2)
#print("Found person: ",person_counter)
return return_boxs,return_class_name
def close_session(self):
self.sess.close()