-
Notifications
You must be signed in to change notification settings - Fork 5
/
configuration.py
executable file
·211 lines (175 loc) · 5.92 KB
/
configuration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# this file must be valid python code
# SongExplorer must be restarted for changes to take effect
# where to save the GUI text boxes
state_dir=""
# sampling rate of and number of channels in the WAV files
audio_tic_rate=2500
audio_nchannels=1
audio_read_plugin="load-wav"
audio_read_plugin_kwargs={}
# sampling rate and frame size of the AVI, MP4, or MOV files (if any)
video_frame_rate=0
video_frame_width=0
video_frame_height=0
video_channels=0 # comma-separated list of which colors to use
video_bkg_frames=0 # how many frames to use when computing median background image to subtract
video_findfile_plugin="same-basename" # given a directory and a WAV file, return the corresponding video file
video_read_plugin="video-read-plugin"
video_read_plugin_kwargs={}
# URL of the 'server' computer
server_username=""
server_ipaddr=""
# how to dispatch jobs to the 'cluster'
cluster_username=""
cluster_ipaddr=""
cluster_cmd=""
cluster_logfile_flag=""
# GUI
gui_nlabels=7
gui_gui_width_pix=1250
#gui_label_palette="Category10_10"
# https://graphicdesign.stackexchange.com/questions/3682/where-can-i-find-a-large-palette-set-of-contrasting-colors-for-coloring-many-d
gui_label_palette="('#0075dc','#993f00','#4c005c','#191919','#005c31','#2bce48','#ffcc99','#808080','#94ffb5','#8f7c00','#9dcc00','#c20088','#003380','#ffa405','#ffa8bb','#426600','#ff0010','#5ef1f2','#00998f','#e0ff66','#740aff','#990000','#ffff80','#ffff00','#ff5005')"
gui_cluster_circle_color="#f0a3ff"
gui_time_units="ms" # units and scales for model parameters, e.g. context, width, stride
gui_time_scale=0.001
gui_freq_units="Hz"
gui_freq_scale=1
gui_snippets_colormap="Viridis256"
gui_snippets_width_sec=0.04
gui_snippets_nx=10
gui_snippets_ny=5
gui_snippets_waveform=1 # comma-separated list of channels to display, or () if none
gui_snippets_spectrogram=1 # comma-separated list of channels to display, or () if none
gui_context_time_units="sec"
gui_context_time_scale=1
gui_context_freq_units="kHz"
gui_context_freq_scale=1000
gui_context_width_sec=0.4
gui_context_offset_sec=0
gui_context_waveform=1 # comma-separated list of channels to display, or () if none
gui_context_waveform_height_pix=150
gui_context_spectrogram=1 # comma-separated list of channels to display, or () if none
gui_context_spectrogram_height_pix=150
gui_context_probability_height_pix=75
gui_context_undo_proximity_pix=3
gui_context_doubleclick_plugin="point" # or snap-to
gui_spectrogram_colormap="Viridis256"
gui_spectrogram_window="hann"
gui_spectrogram_length_sec=0.010
gui_spectrogram_overlap=0.5
gui_spectrogram_low_hz=0
gui_spectrogram_high_hz=1250
gui_spectrogram_clip=[1,99]
gui_probability_style="lines" # either "lines" or "bars"
# neural network architecture to use
architecture_plugin="convolutional"
overlapped_prefix="not_"
# on what computer to do the computation
default_where="local"
# action buttons
detect_where=default_where
detect_ncpu_cores=-1
detect_ngpu_cards=-1
detect_ngigabytes_memory=-1
detect_cluster_flags=""
detect_plugin="time-freq-threshold"
misses_where=default_where
misses_ncpu_cores=-1
misses_ngpu_cards=-1
misses_ngigabytes_memory=-1
misses_cluster_flags=""
train_where=default_where
train_ncpu_cores=-1
train_ngpu_cards=-1
train_ngigabytes_memory=-1
train_cluster_flags=""
generalize_where=default_where
generalize_ncpu_cores=-1
generalize_ngpu_cards=-1
generalize_ngigabytes_memory=-1
generalize_cluster_flags=""
xvalidate_where=default_where
xvalidate_ncpu_cores=-1
xvalidate_ngpu_cards=-1
xvalidate_ngigabytes_memory=-1
xvalidate_cluster_flags=""
mistakes_where=default_where
mistakes_ncpu_cores=-1
mistakes_ngpu_cards=-1
mistakes_ngigabytes_memory=-1
mistakes_cluster_flags=""
activations_where=default_where
activations_ncpu_cores=-1
activations_ngpu_cards=-1
activations_ngigabytes_memory=-1
activations_cluster_flags=""
cluster_where=default_where
cluster_ncpu_cores=-1
cluster_ngpu_cards=-1
cluster_ngigabytes_memory=-1
cluster_cluster_flags=""
cluster_plugin="UMAP" # or tSNE, PCA
accuracy_where=default_where
accuracy_ncpu_cores=-1
accuracy_ngpu_cards=-1
accuracy_ngigabytes_memory=-1
accuracy_cluster_flags=""
delete_ckpts_where=default_where
delete_ckpts_ncpu_cores=-1
delete_ckpts_ngpu_cards=-1
delete_ckpts_ngigabytes_memory=-1
delete_ckpts_cluster_flags=""
freeze_where=default_where
freeze_ncpu_cores=-1
freeze_ngpu_cards=-1
freeze_ngigabytes_memory=-1
freeze_cluster_flags=""
ensemble_where=default_where
ensemble_ncpu_cores=-1
ensemble_ngpu_cards=-1
ensemble_ngigabytes_memory=-1
ensemble_cluster_flags=""
classify_where=default_where
classify_ncpu_cores=-1
classify_ngpu_cards=-1
classify_ngigabytes_memory=-1
classify_cluster_flags=""
ethogram_where=default_where
ethogram_ncpu_cores=-1
ethogram_ngpu_cards=-1
ethogram_ngigabytes_memory=-1
ethogram_cluster_flags=""
compare_where=default_where
compare_ncpu_cores=-1
compare_ngpu_cards=-1
compare_ngigabytes_memory=-1
compare_cluster_flags=""
congruence_where=default_where
congruence_ncpu_cores=-1
congruence_ngpu_cards=-1
congruence_ngigabytes_memory=-1
congruence_cluster_flags=""
# simultaneously train multiple models on one GPU
models_per_job=1
# use incremental PCA to conserve memory when clustering if >0
pca_batch_size=0
# parallelizing is faster but requires more RAM.
# use -1 to automatically use all CPU cores, 0 to not parallelize at all,
# or a positive integer to manually specify how many CPU cores to use.
cluster_parallelize=-1
accuracy_parallelize=-1
congruence_parallelize=-1
# how many points to use for the precision-recall, sensitivity-specificity, and congruence curves
nprobabilities=20
# used by freeze and classify to specify how many output time tics to process in parallel.
# must be greater than one.
classify_parallelize=64
# used by train, generalize, xvalidate, and activations
data_loader_maxprocs=0 # 0 = num CPU cores
data_loader_queuesize=1 # 0 = infinite
# what follows is for developers only
# the location of writable code files
source_path=""
# a boolean to make the output (more) reproducible
deterministic=0