-
Notifications
You must be signed in to change notification settings - Fork 0
/
q2_neural.py
83 lines (68 loc) · 2.51 KB
/
q2_neural.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
import random
from q1_softmax import softmax
from q2_sigmoid import sigmoid, sigmoid_grad
from q2_gradcheck import gradcheck_naive
def forward_backward_prop(data, labels, params, dimensions):
"""
Forward and backward propagation for a two-layer sigmoidal network
Compute the forward propagation and for the cross entropy cost,
and backward propagation for the gradients for all parameters.
"""
### Unpack network parameters (do not modify)
ofs = 0
Dx, H, Dy = (dimensions[0], dimensions[1], dimensions[2])
W1 = np.reshape(params[ofs:ofs+ Dx * H], (Dx, H))
ofs += Dx * H
b1 = np.reshape(params[ofs:ofs + H], (1, H))
ofs += H
W2 = np.reshape(params[ofs:ofs + H * Dy], (H, Dy))
ofs += H * Dy
b2 = np.reshape(params[ofs:ofs + Dy], (1, Dy))
### YOUR CODE HERE: forward propagation
h = sigmoid(np.dot(data,W1) + b1)
y_pred = softmax(np.dot(h,W2) + b2)
cost = - np.sum(np.log(np.einsum('ij,ij->i',labels, y_pred)))
### END YOUR CODE
### YOUR CODE HERE: backward propagation
diff = y_pred - labels
gradb2 = np.sum(diff, axis=0).reshape(1,-1)
gradW2 = np.dot(h.T, diff)
grad_tmp = np.dot(diff, W2.T) * sigmoid_grad(h)
gradb1 = np.sum(grad_tmp, axis=0).reshape(1,-1)
gradW1 = np.dot(data.T, grad_tmp)
### END YOUR CODE
### Stack gradients (do not modify)
grad = np.concatenate((gradW1.flatten(), gradb1.flatten(),
gradW2.flatten(), gradb2.flatten()))
return cost, grad
def sanity_check():
"""
Set up fake data and parameters for the neural network, and test using
gradcheck.
"""
print "Running sanity check..."
N = 20
dimensions = [10, 5, 15]
data = np.random.randn(N, dimensions[0]) # each row will be a datum
labels = np.zeros((N, dimensions[2]))
for i in xrange(N):
labels[i,random.randint(0,dimensions[2]-1)] = 1
params = np.random.randn((dimensions[0] + 1) * dimensions[1] + (
dimensions[1] + 1) * dimensions[2], )
gradcheck_naive(lambda params: forward_backward_prop(data, labels, params,
dimensions), params)
def your_sanity_checks():
"""
Use this space add any additional sanity checks by running:
python q2_neural.py
This function will not be called by the autograder, nor will
your additional tests be graded.
"""
print "Running your sanity checks..."
### YOUR CODE HERE
raise NotImplementedError
### END YOUR CODE
if __name__ == "__main__":
sanity_check()
#your_sanity_checks()