forked from carla-simulator/rllib-integration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpg_train.py
194 lines (156 loc) · 6.75 KB
/
ddpg_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python
# Copyright (c) 2021 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""DDPG Algorithm. Tested with CARLA.
You can visualize experiment results in ~/ray_results using TensorBoard.
"""
from __future__ import print_function
import argparse
import math
import os
import random
import pickle
import yaml
import ray
from ray import tune
from checker import check_with_user, commit_hash
from rllib_integration.carla_env import CarlaEnv
from rllib_integration.carla_core import kill_all_servers
from rllib_integration.helper import get_checkpoint, launch_tensorboard
from ddpg.ddpg_experiment_basic import DDPGExperimentBasic
from ddpg.ddpg_callbacks import DDPGCallbacks
from ddpg.ddpg_trainer import CustomDDPGTrainer
# Set the experiment to EXPERIMENT_CLASS so that it is passed to the configuration
EXPERIMENT_CLASS = DDPGExperimentBasic
def save_to_pickle(filename, data):
filename = filename + '.pickle'
with open(filename, 'wb') as handle:
pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)
def run(args):
try:
os.environ['RAY_DISABLE_MEMORY_MONITOR'] = '1'
ray.init( num_gpus=1,include_dashboard=True,_temp_dir="/home/daniel/data-rllib-integration/ray_logs")
analysis = tune.run(CustomDDPGTrainer,
name=args.name,
local_dir=args.directory,
# stop={"perf/ram_util_percent": 85.0},
checkpoint_freq=30000,
# checkpoint_at_end=True,
restore=get_checkpoint(args.name, args.directory, args.restore, args.overwrite),
config=args.config,
# queue_trials=True,
resume=False,
reuse_actors=True,
)
print("----------------HERE")
print(analysis.__dict__)
# print(analysis.get_all_configs())
# print(analysis.get_best_trial())
print("----------------HERE")
finally:
kill_all_servers()
ray.shutdown()
# Memory usage on this node: 15.5/15.8 GiB: ***LOW MEMORY***
# less than 10% of the memory on this node is available for use. This can cause unexpected crashes.
# Consider reducing the memory used by your application or reducing the Ray object store size by setting `object_store_memory` when calling `ray.init`.
def parse_config(args):
"""
Parses the .yaml configuration file into a readable dictionary
"""
with open(args.configuration_file) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
config["env"] = CarlaEnv
config["env_config"]["experiment"]["type"] = EXPERIMENT_CLASS
config["callbacks"] = DDPGCallbacks
return config
def get_server_maps_dist(config):
num_workers = config['num_workers']
town1 = config["env_config"]["experiment"]["town1"]
town1Ratio = config["env_config"]["experiment"]["town1Ratio"]
town2 = config["env_config"]["experiment"]["town2"]
town2Ratio = config["env_config"]["experiment"]["town2Ratio"]
assert town1Ratio+town2Ratio == 1
if town1 == 'None':
raise Exception('No town 1 entered')
if town2 == 'None':
inp = input('No town 2 entered confirm? (y/n): ')
if inp != 'y':
raise Exception('No town 2 entered')
print('---------------------------------------')
output = []
if town2 == 'None':
for i in range(num_workers):
output.append(town1)
else:
if town1Ratio < town2Ratio:
num_of_workers_for_town1 = math.floor(num_workers*town1Ratio)
num_of_workers_for_town1 = 1 if num_of_workers_for_town1 == 0 else num_of_workers_for_town1
num_of_workers_for_town2 = num_workers - num_of_workers_for_town1
else:
num_of_workers_for_town2 = math.floor(num_workers*town2Ratio)
num_of_workers_for_town2 = 1 if num_of_workers_for_town2 == 0 else num_of_workers_for_town2
num_of_workers_for_town1 = num_workers - num_of_workers_for_town2
for i in range(num_of_workers_for_town1):
output.append(town1)
for j in range(num_of_workers_for_town2):
output.append(town2)
return output
def main():
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument("configuration_file",
help="Configuration file (*.yaml)")
argparser.add_argument("-d", "--directory",
metavar='D',
default=os.path.expanduser("~") + "/ray_results/carla_rllib",
help="Specified directory to save results (default: ~/ray_results/carla_rllib")
argparser.add_argument("-n", "--name",
metavar="N",
default="ddpg_example",
help="Name of the experiment (default: ddpg_example)")
argparser.add_argument("--restore",
action="store_true",
default=False,
help="Flag to restore from the specified directory")
argparser.add_argument("--overwrite",
action="store_true",
default=False,
help="Flag to overwrite a specific directory (warning: all content of the folder will be lost.)")
argparser.add_argument("--tboff",
action="store_true",
default=False,
help="Flag to deactivate Tensorboard")
argparser.add_argument("--auto",
action="store_true",
default=False,
help="Flag to use auto address")
args = argparser.parse_args()
args.config = parse_config(args)
path = os.path.join(args.directory, args.name + '_' + str(commit_hash()))
launch_tensorboard(logdir= path,
host="localhost", port="6010")
specific_version = False
check_commit = True
output = get_server_maps_dist(config=args.config)
print(output)
save_to_pickle('server_maps',output)
save_to_pickle('waiting_times',[0,20,40,60,85,105,125,145,165,185,0,20,40,60,80,100,120,140,160,180])
if check_with_user(check_commit):
args.name = args.name + '_' + str(commit_hash())
if specific_version:
args.name = ""
x = random.randint(0,100)
inp = input(f'SPECIFIC NAME APPLIED ENTER {x} to confirm:')
if int(x) == int(inp):
run(args)
else:
run(args)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
pass
finally:
print('\ndone.')